{"title":"Extending nanoindentation testing toward extreme strain rates and temperatures for probing materials evolution at the nanoscale.","authors":"Benoit Merle, Gabrielle Tiphéne, Guillaume Kermouche","doi":"10.1557/s43577-025-00918-7","DOIUrl":null,"url":null,"abstract":"<p><strong>Abstract: </strong>For the past 30 years, nanoindentation has provided critical insights into the microstructure-strength relationship for a wide range of materials. However, it has traditionally been limited to quasistatic testing at room temperature, which has hindered a holistic understanding of microstructurally induced deformation mechanisms and their dynamic evolution as a function of the temperature and strain rate. Over the past decade, the operational scope of nanoindentation has expanded dramatically. Temperatures up to 1100°C and strain rates as high as 10<sup>+4</sup> s<sup>-1</sup> and as low as 10<sup>-8</sup> s<sup>-1</sup> have become accessible. In addition, advanced techniques allow tracking microstructural evolution and corresponding changes in mechanical behavior during deformation under extreme conditions. These advancements have transformed nanoindentation into a versatile tool for comprehensive materials characterization, enabling high-throughput investigations under multimodal conditions.</p><p><strong>Graphical abstract: </strong></p>","PeriodicalId":18828,"journal":{"name":"Mrs Bulletin","volume":"50 6","pages":"705-714"},"PeriodicalIF":4.9000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12162694/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mrs Bulletin","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1557/s43577-025-00918-7","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/5/21 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Abstract: For the past 30 years, nanoindentation has provided critical insights into the microstructure-strength relationship for a wide range of materials. However, it has traditionally been limited to quasistatic testing at room temperature, which has hindered a holistic understanding of microstructurally induced deformation mechanisms and their dynamic evolution as a function of the temperature and strain rate. Over the past decade, the operational scope of nanoindentation has expanded dramatically. Temperatures up to 1100°C and strain rates as high as 10+4 s-1 and as low as 10-8 s-1 have become accessible. In addition, advanced techniques allow tracking microstructural evolution and corresponding changes in mechanical behavior during deformation under extreme conditions. These advancements have transformed nanoindentation into a versatile tool for comprehensive materials characterization, enabling high-throughput investigations under multimodal conditions.
期刊介绍:
MRS Bulletin is one of the most widely recognized and highly respected publications in advanced materials research. Each month, the Bulletin provides a comprehensive overview of a specific materials theme, along with industry and policy developments, and MRS and materials-community news and events. Written by leading experts, the overview articles are useful references for specialists, but are also presented at a level understandable to a broad scientific audience.