Reduced expression of Pss gene in Drosophila cortex glia causes dopaminergic cell death.

IF 4 3区 医学 Q2 NEUROSCIENCES
Banya Pak, Chaeeun Kim, Seung-Hae Kwon, Joon-Kyu Lee, Sang-Hak Jeon
{"title":"Reduced expression of <i>Pss</i> gene in <i>Drosophila</i> cortex glia causes dopaminergic cell death.","authors":"Banya Pak, Chaeeun Kim, Seung-Hae Kwon, Joon-Kyu Lee, Sang-Hak Jeon","doi":"10.1177/1877718X251349407","DOIUrl":null,"url":null,"abstract":"<p><p>BackgroundParkinson's disease (PD) is a common neurodegenerative disorder characterized by the progressive loss of dopaminergic neurons. While abnormal protein aggregation has been classically implicated in PD, increasing evidence suggests that lipid dysregulation may also contribute to neuronal vulnerability. Recent studies have begun to link abnormal phosphatidylserine (PS) metabolism to mitochondrial impairment and dopaminergic neuron loss in PD, yet the underlying cellular mechanisms remain poorly defined.ObjectiveThis study aimed to determine how impaired PS synthesis in cortex glia affects mitochondrial function, oxidative stress, and dopaminergic neuron survival, using a <i>Drosophila</i> model of glia-specific <i>Phosphatidylserine synthase</i> (<i>Pss</i>) knockdown.MethodsTo dissect the glial contribution to PS-related neurodegeneration, we employed a <i>Drosophila</i> model in which the <i>Pss</i> gene was selectively knocked down in cortex glia using the GAL4-UAS system. We evaluated PD-like phenotypes by assessing the number of dopaminergic neurons in the PPL1 and PPL2 clusters, as well as locomotor activity and lifespan, following glia-specific knockdown of <i>Pss</i> gene.ResultsCortex glia-specific knockdown of <i>Pss</i> impaired locomotion and reduced lifespan in flies, indicating a systemic decline in neuronal and mitochondrial function. <i>Pss</i> knockdown reduced <i>mitochondrial transcription factor A</i> (<i>Tfam</i>) expression, disrupted mitochondrial gene expression, and elevated ROS levels. Western blot analysis also revealed reduced AKT phosphorylation without changes in total AKT. These results ultimately lead to loss of dopaminergic neurons.ConclusionsThese findings establish a mechanistic link among abnormal PS metabolism, impaired AKT signaling, mitochondrial dysfunction, and dopaminergic neuron loss. Our study provides novel evidence that glia-driven abnormalities in PS metabolism may cause PD-like neurodegeneration, offering mechanistic insights and potential therapeutic targets.</p>","PeriodicalId":16660,"journal":{"name":"Journal of Parkinson's disease","volume":" ","pages":"1877718X251349407"},"PeriodicalIF":4.0000,"publicationDate":"2025-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Parkinson's disease","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1177/1877718X251349407","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

BackgroundParkinson's disease (PD) is a common neurodegenerative disorder characterized by the progressive loss of dopaminergic neurons. While abnormal protein aggregation has been classically implicated in PD, increasing evidence suggests that lipid dysregulation may also contribute to neuronal vulnerability. Recent studies have begun to link abnormal phosphatidylserine (PS) metabolism to mitochondrial impairment and dopaminergic neuron loss in PD, yet the underlying cellular mechanisms remain poorly defined.ObjectiveThis study aimed to determine how impaired PS synthesis in cortex glia affects mitochondrial function, oxidative stress, and dopaminergic neuron survival, using a Drosophila model of glia-specific Phosphatidylserine synthase (Pss) knockdown.MethodsTo dissect the glial contribution to PS-related neurodegeneration, we employed a Drosophila model in which the Pss gene was selectively knocked down in cortex glia using the GAL4-UAS system. We evaluated PD-like phenotypes by assessing the number of dopaminergic neurons in the PPL1 and PPL2 clusters, as well as locomotor activity and lifespan, following glia-specific knockdown of Pss gene.ResultsCortex glia-specific knockdown of Pss impaired locomotion and reduced lifespan in flies, indicating a systemic decline in neuronal and mitochondrial function. Pss knockdown reduced mitochondrial transcription factor A (Tfam) expression, disrupted mitochondrial gene expression, and elevated ROS levels. Western blot analysis also revealed reduced AKT phosphorylation without changes in total AKT. These results ultimately lead to loss of dopaminergic neurons.ConclusionsThese findings establish a mechanistic link among abnormal PS metabolism, impaired AKT signaling, mitochondrial dysfunction, and dopaminergic neuron loss. Our study provides novel evidence that glia-driven abnormalities in PS metabolism may cause PD-like neurodegeneration, offering mechanistic insights and potential therapeutic targets.

Pss基因在果蝇皮层胶质细胞中的表达减少导致多巴胺能细胞死亡。
帕金森病(PD)是一种常见的神经退行性疾病,其特征是多巴胺能神经元的进行性丧失。虽然异常的蛋白质聚集通常与帕金森病有关,但越来越多的证据表明,脂质失调也可能导致神经元易感性。最近的研究已经开始将磷脂酰丝氨酸(PS)代谢异常与帕金森病患者的线粒体损伤和多巴胺能神经元丢失联系起来,但潜在的细胞机制仍不明确。本研究旨在通过果蝇胶质细胞特异性磷脂酰丝氨酸合成酶(Pss)敲低模型,确定皮层胶质细胞中PS合成受损如何影响线粒体功能、氧化应激和多巴胺能神经元的存活。方法采用GAL4-UAS系统选择性敲除Pss基因的果蝇皮质胶质细胞模型,分析神经胶质细胞在ps相关神经退行性变中的作用。我们通过评估PPL1和PPL2簇中多巴胺能神经元的数量,以及Pss基因在胶质特异性敲低后的运动活性和寿命来评估pd样表型。结果Pss的皮质胶质特异性敲低会损害果蝇的运动能力并缩短寿命,表明神经元和线粒体功能的全身性下降。Pss敲低降低了线粒体转录因子A (Tfam)的表达,线粒体基因表达中断,ROS水平升高。Western blot分析也显示AKT磷酸化减少,但AKT总量没有变化。这些结果最终导致多巴胺能神经元的丧失。结论这些发现在PS代谢异常、AKT信号受损、线粒体功能障碍和多巴胺能神经元丧失之间建立了机制联系。我们的研究提供了新的证据,胶质细胞驱动的PS代谢异常可能导致pd样神经变性,提供了机制见解和潜在的治疗靶点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
8.40
自引率
5.80%
发文量
338
审稿时长
>12 weeks
期刊介绍: The Journal of Parkinson''s Disease (JPD) publishes original research in basic science, translational research and clinical medicine in Parkinson’s disease in cooperation with the Journal of Alzheimer''s Disease. It features a first class Editorial Board and provides rigorous peer review and rapid online publication.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信