Determining decoating efficiency for mechanically stressed catalyst coated membranes of proton exchange membrane water electrolysers

IF 1.9 4区 工程技术 Q3 MICROSCOPY
Malena Staudacher, Andréa de Lima Ribeiro, Ruben Wagner, Margret Fuchs, Anja Weidner, Thomas Buchwald, Urs A. Peuker
{"title":"Determining decoating efficiency for mechanically stressed catalyst coated membranes of proton exchange membrane water electrolysers","authors":"Malena Staudacher,&nbsp;Andréa de Lima Ribeiro,&nbsp;Ruben Wagner,&nbsp;Margret Fuchs,&nbsp;Anja Weidner,&nbsp;Thomas Buchwald,&nbsp;Urs A. Peuker","doi":"10.1111/jmi.70000","DOIUrl":null,"url":null,"abstract":"<p>The recovery of critical raw materials from water electrolysers, which are used to produce green hydrogen, is essential to keep the raw materials with limited availability in the material cycle and to facilitate the expansion of production of this technology, which is supposed to be essential for the decarbonisation of our industrial society. Proton exchange membrane water electrolysers (PEMWE) use precious metals such as Ir and Pt as catalysts, which require a high recycling rate due to their natural scarcity. In order to investigate at an early-stage mechanical recycling technologies, such as shredding for liberation and milling for decoating of these complex materials, it becomes necessary to develop small-scale experimental methods. This is due to the low availability of End-of-Life samples and the high price of pristine electrolyser components. Especially decoating has shown huge potential for a highly selective separation of defined material layers; nevertheless, until now, there is no method to determine the success of decoating of the flexible polymer membrane, which is coated on both sides with particle-based electrodes. One possible concept is presented here, using scanning electron microscope images and micro-X-ray fluorescence elemental maps. Image processing and segmentation is performed using the WEKA software and a simple thresholding method. This allows the efficiency of the decoating process to be determined with an accuracy of ±0.5 percentage points for decoated PEMWE cell samples. The high accuracy of the presented method framework provides the necessary tool for any further quantitative development of improved mechanical stressing for decoating.</p>","PeriodicalId":16484,"journal":{"name":"Journal of microscopy","volume":"300 1","pages":"51-67"},"PeriodicalIF":1.9000,"publicationDate":"2025-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/jmi.70000","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of microscopy","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/jmi.70000","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MICROSCOPY","Score":null,"Total":0}
引用次数: 0

Abstract

The recovery of critical raw materials from water electrolysers, which are used to produce green hydrogen, is essential to keep the raw materials with limited availability in the material cycle and to facilitate the expansion of production of this technology, which is supposed to be essential for the decarbonisation of our industrial society. Proton exchange membrane water electrolysers (PEMWE) use precious metals such as Ir and Pt as catalysts, which require a high recycling rate due to their natural scarcity. In order to investigate at an early-stage mechanical recycling technologies, such as shredding for liberation and milling for decoating of these complex materials, it becomes necessary to develop small-scale experimental methods. This is due to the low availability of End-of-Life samples and the high price of pristine electrolyser components. Especially decoating has shown huge potential for a highly selective separation of defined material layers; nevertheless, until now, there is no method to determine the success of decoating of the flexible polymer membrane, which is coated on both sides with particle-based electrodes. One possible concept is presented here, using scanning electron microscope images and micro-X-ray fluorescence elemental maps. Image processing and segmentation is performed using the WEKA software and a simple thresholding method. This allows the efficiency of the decoating process to be determined with an accuracy of ±0.5 percentage points for decoated PEMWE cell samples. The high accuracy of the presented method framework provides the necessary tool for any further quantitative development of improved mechanical stressing for decoating.

Abstract Image

测定质子交换膜水电解器机械应力催化剂包覆膜的脱水效率。
从用于生产绿色氢的水电解槽中回收关键原材料,对于在材料循环中保持有限可用性的原材料,并促进该技术的生产扩大至关重要,这对于我们工业社会的脱碳至关重要。质子交换膜式水电解器(PEMWE)采用Ir和Pt等贵金属作为催化剂,由于其天然稀缺性,要求较高的回收利用率。为了在早期阶段研究机械回收技术,如粉碎解放和粉碎这些复杂材料的脱水,有必要开发小规模的实验方法。这是由于报废样品的低可用性和原始电解槽组件的高价格。特别是脱水在高度选择性分离确定的材料层方面显示出巨大的潜力;然而,到目前为止,还没有办法确定柔性聚合物膜的脱水是否成功,这种膜的两侧都涂有基于颗粒的电极。这里提出了一个可能的概念,使用扫描电子显微镜图像和微x射线荧光元素图。使用WEKA软件和简单的阈值法对图像进行处理和分割。这允许以±0.5个百分点的精度确定解码过程的效率,用于解码的PEMWE电池样品。所提出的方法框架具有较高的精度,为进一步定量开发改进的脱水机械应力提供了必要的工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of microscopy
Journal of microscopy 工程技术-显微镜技术
CiteScore
4.30
自引率
5.00%
发文量
83
审稿时长
1 months
期刊介绍: The Journal of Microscopy is the oldest journal dedicated to the science of microscopy and the only peer-reviewed publication of the Royal Microscopical Society. It publishes papers that report on the very latest developments in microscopy such as advances in microscopy techniques or novel areas of application. The Journal does not seek to publish routine applications of microscopy or specimen preparation even though the submission may otherwise have a high scientific merit. The scope covers research in the physical and biological sciences and covers imaging methods using light, electrons, X-rays and other radiations as well as atomic force and near field techniques. Interdisciplinary research is welcome. Papers pertaining to microscopy are also welcomed on optical theory, spectroscopy, novel specimen preparation and manipulation methods and image recording, processing and analysis including dynamic analysis of living specimens. Publication types include full papers, hot topic fast tracked communications and review articles. Authors considering submitting a review article should contact the editorial office first.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信