Identification of a novel and high affinity MIF inhibitor via structure-based pharmacophore modelling, molecular docking, molecular dynamics simulations, and biological evaluation.
Shang Zhu, Shudan Yang, Yao Chen, Miao-Miao Niu, Jun Wang, Jindong Li, Xuehua Pu
{"title":"Identification of a novel and high affinity MIF inhibitor <i>via</i> structure-based pharmacophore modelling, molecular docking, molecular dynamics simulations, and biological evaluation.","authors":"Shang Zhu, Shudan Yang, Yao Chen, Miao-Miao Niu, Jun Wang, Jindong Li, Xuehua Pu","doi":"10.1080/14756366.2025.2501378","DOIUrl":null,"url":null,"abstract":"<p><p>Macrophage migration inhibitory factor (MIF) plays a crucial role in disrupting immune homeostasis and was overexpressed in immune cells. The inhibitors of MIF inhibit the release of inflammatory factors to treat sepsis. Herein, a series of compounds (termed as Hits 1-6) were discovered based on pharmacophore modelling, molecular docking, and interaction analysis. The biaryltriazole inhibitor 3a was used as the positive control. MST and ITC experiments showed that compared to 3a, Hit-1 possessed the highest affinity with MIF. MD simulations exhibited that Hit-1 stably bound to the active pocket of MIF. Pull down experiment showed that Hit-1 could interfere with the binding of MIF to CD74. Furthermore, RT-qPCR demonstrated that Hit-1 suppressed the release of pro-inflammatory cytokines in macrophages including TNF-α, IL-6, and IL-1β. These data demonstrate that Hit-1 may be a promising and high-affinity candidate compound treating sepsis.</p>","PeriodicalId":15769,"journal":{"name":"Journal of Enzyme Inhibition and Medicinal Chemistry","volume":"40 1","pages":"2501378"},"PeriodicalIF":5.4000,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12172083/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Enzyme Inhibition and Medicinal Chemistry","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/14756366.2025.2501378","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/6/15 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Macrophage migration inhibitory factor (MIF) plays a crucial role in disrupting immune homeostasis and was overexpressed in immune cells. The inhibitors of MIF inhibit the release of inflammatory factors to treat sepsis. Herein, a series of compounds (termed as Hits 1-6) were discovered based on pharmacophore modelling, molecular docking, and interaction analysis. The biaryltriazole inhibitor 3a was used as the positive control. MST and ITC experiments showed that compared to 3a, Hit-1 possessed the highest affinity with MIF. MD simulations exhibited that Hit-1 stably bound to the active pocket of MIF. Pull down experiment showed that Hit-1 could interfere with the binding of MIF to CD74. Furthermore, RT-qPCR demonstrated that Hit-1 suppressed the release of pro-inflammatory cytokines in macrophages including TNF-α, IL-6, and IL-1β. These data demonstrate that Hit-1 may be a promising and high-affinity candidate compound treating sepsis.
期刊介绍:
Journal of Enzyme Inhibition and Medicinal Chemistry publishes open access research on enzyme inhibitors, inhibitory processes, and agonist/antagonist receptor interactions in the development of medicinal and anti-cancer agents.
Journal of Enzyme Inhibition and Medicinal Chemistry aims to provide an international and interdisciplinary platform for the latest findings in enzyme inhibition research.
The journal’s focus includes current developments in:
Enzymology;
Cell biology;
Chemical biology;
Microbiology;
Physiology;
Pharmacology leading to drug design;
Molecular recognition processes;
Distribution and metabolism of biologically active compounds.