{"title":"Establish VO<sub>2</sub>max prediction models based on exercise and body parameters from the step test.","authors":"Chia-An Ho, Hung-Chih Yeh, Hei-Tung Lau, En-Yu Chang, Chih-Wen Hsu, Chun-Hao Chang, Chi-Chang Huang, Wen-Sheng Chang Chien, Chin-Shan Ho","doi":"10.7150/ijms.109977","DOIUrl":null,"url":null,"abstract":"<p><p>This study addresses the challenge of cardiorespiratory fitness (CRF) assessment by proposing predictive models for maximal oxygen uptake (VO₂max) based on step test parameters. Recognizing VO₂max as a gold standard for CRF evaluation, this study aims to develop a VO₂max prediction model based on a step test, providing a simple and practical alternative for primary healthcare and health monitoring. This model enables clinicians and health management professionals to efficiently assess patients' cardiorespiratory fitness. Through the recruitment of 200 healthy Taiwanese adults, the research combined direct VO₂max measurements with step test heart rate (HR) data and variables like age, sex, percentage body fat (PBF), body mass index (BMI), and resting heart rate (RHR) to develop six predictive models. This method is applicable for clinical health monitoring, cardiorespiratory fitness assessment in patients with chronic diseases, and exercise capacity monitoring in cardiac rehabilitation programs. The study identified that PBF-based models consistently outperformed BMI-based ones, with Model<sup>PBF3</sup>, which incorporates HR responses during exercise, achieving the highest accuracy (R² = 0.689; SEE = 4.6971 ml·kg⁻¹·min⁻¹). These results indicate that the model can effectively estimate VO₂max and be applied in primary healthcare, remote health monitoring, and cardiac rehabilitation settings, providing a simple and practical tool for cardiorespiratory fitness assessment in clinical practice. Validation via PRESS cross-validation and Bland-Altman plots confirmed the stability and reliability of the models across diverse subgroups. By bridging the gap between laboratory-grade precision and everyday practicality, the study introduces a robust, low-cost, and user-friendly tool for CRF assessment, adaptable for non-athletes and those unable to perform high-intensity exercises. This research advances the feasibility of CRF self-management in varied settings, while future iterations could extend its applicability to broader demographics and integrate additional physiological variables for universal adoption.</p>","PeriodicalId":14031,"journal":{"name":"International Journal of Medical Sciences","volume":"22 11","pages":"2676-2685"},"PeriodicalIF":3.2000,"publicationDate":"2025-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12163378/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Medical Sciences","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.7150/ijms.109977","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"MEDICINE, GENERAL & INTERNAL","Score":null,"Total":0}
引用次数: 0
Abstract
This study addresses the challenge of cardiorespiratory fitness (CRF) assessment by proposing predictive models for maximal oxygen uptake (VO₂max) based on step test parameters. Recognizing VO₂max as a gold standard for CRF evaluation, this study aims to develop a VO₂max prediction model based on a step test, providing a simple and practical alternative for primary healthcare and health monitoring. This model enables clinicians and health management professionals to efficiently assess patients' cardiorespiratory fitness. Through the recruitment of 200 healthy Taiwanese adults, the research combined direct VO₂max measurements with step test heart rate (HR) data and variables like age, sex, percentage body fat (PBF), body mass index (BMI), and resting heart rate (RHR) to develop six predictive models. This method is applicable for clinical health monitoring, cardiorespiratory fitness assessment in patients with chronic diseases, and exercise capacity monitoring in cardiac rehabilitation programs. The study identified that PBF-based models consistently outperformed BMI-based ones, with ModelPBF3, which incorporates HR responses during exercise, achieving the highest accuracy (R² = 0.689; SEE = 4.6971 ml·kg⁻¹·min⁻¹). These results indicate that the model can effectively estimate VO₂max and be applied in primary healthcare, remote health monitoring, and cardiac rehabilitation settings, providing a simple and practical tool for cardiorespiratory fitness assessment in clinical practice. Validation via PRESS cross-validation and Bland-Altman plots confirmed the stability and reliability of the models across diverse subgroups. By bridging the gap between laboratory-grade precision and everyday practicality, the study introduces a robust, low-cost, and user-friendly tool for CRF assessment, adaptable for non-athletes and those unable to perform high-intensity exercises. This research advances the feasibility of CRF self-management in varied settings, while future iterations could extend its applicability to broader demographics and integrate additional physiological variables for universal adoption.
期刊介绍:
Original research papers, reviews, and short research communications in any medical related area can be submitted to the Journal on the understanding that the work has not been published previously in whole or part and is not under consideration for publication elsewhere. Manuscripts in basic science and clinical medicine are both considered. There is no restriction on the length of research papers and reviews, although authors are encouraged to be concise. Short research communication is limited to be under 2500 words.