Multifunctional MeHA hydrogel for living materials delivery with enhanced cartilage regeneration.

IF 4.3 3区 工程技术 Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
Frontiers in Bioengineering and Biotechnology Pub Date : 2025-05-30 eCollection Date: 2025-01-01 DOI:10.3389/fbioe.2025.1545773
Qunchao Chen, Lang Bai, Guoyang Wan, Yuefeng Hao, Xing Yang, Hongtao Zhang
{"title":"Multifunctional MeHA hydrogel for living materials delivery with enhanced cartilage regeneration.","authors":"Qunchao Chen, Lang Bai, Guoyang Wan, Yuefeng Hao, Xing Yang, Hongtao Zhang","doi":"10.3389/fbioe.2025.1545773","DOIUrl":null,"url":null,"abstract":"<p><p>Particulated juvenile articular cartilage (PJAC) has emerged as a promising living material for articular defect treatment. However, the fragile nature of PJAC hinders its wide clinical application. Here, inspired by the chemical composition and hierarchical structure of natural cartilage, we developed a novel hydrogel carrier system for PJAC delivery. Our carrier system, MeHA@J@DM, utilized methacrylated hyaluronic acid (MeHA) to incorporate PJAC and coated it with a polymerized mixture of dopamine methacrylamide (DMA) and 2-methylacryloyloxyethyl phosphorylcholine (MPC), forming an adhesive lubricant, p(DMA-MPC). MeHA@J@DM exhibited excellent performance for PJAC protection with enhanced cell viability, bioactivity, and lubrication properties. We evaluated the effectiveness of MeHA@J@DM in cartilage cell migration, where juvenile cartilage showed greater efficiency and remodeling abilities. <i>In vivo</i> rabbit cartilage defect models demonstrated superior cartilage regeneration with the MeHA@J@DM hydrogel. Our findings suggest that MeHA@J@DM has translational potential for PJAC implantation to enhance cartilage regeneration and benefit patients with articular cartilage lesions.</p>","PeriodicalId":12444,"journal":{"name":"Frontiers in Bioengineering and Biotechnology","volume":"13 ","pages":"1545773"},"PeriodicalIF":4.3000,"publicationDate":"2025-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12162624/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Bioengineering and Biotechnology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3389/fbioe.2025.1545773","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Particulated juvenile articular cartilage (PJAC) has emerged as a promising living material for articular defect treatment. However, the fragile nature of PJAC hinders its wide clinical application. Here, inspired by the chemical composition and hierarchical structure of natural cartilage, we developed a novel hydrogel carrier system for PJAC delivery. Our carrier system, MeHA@J@DM, utilized methacrylated hyaluronic acid (MeHA) to incorporate PJAC and coated it with a polymerized mixture of dopamine methacrylamide (DMA) and 2-methylacryloyloxyethyl phosphorylcholine (MPC), forming an adhesive lubricant, p(DMA-MPC). MeHA@J@DM exhibited excellent performance for PJAC protection with enhanced cell viability, bioactivity, and lubrication properties. We evaluated the effectiveness of MeHA@J@DM in cartilage cell migration, where juvenile cartilage showed greater efficiency and remodeling abilities. In vivo rabbit cartilage defect models demonstrated superior cartilage regeneration with the MeHA@J@DM hydrogel. Our findings suggest that MeHA@J@DM has translational potential for PJAC implantation to enhance cartilage regeneration and benefit patients with articular cartilage lesions.

多功能MeHA水凝胶,用于活体材料输送,增强软骨再生。
颗粒状幼年关节软骨(PJAC)是一种很有前途的关节缺损治疗材料。然而,PJAC的易碎性阻碍了其广泛的临床应用。在这里,受天然软骨的化学成分和层次结构的启发,我们开发了一种用于PJAC递送的新型水凝胶载体系统。我们的载体体系MeHA@J@DM利用甲基丙烯酸透明质酸(MeHA)与PJAC结合,并用多巴胺甲基丙烯酰胺(DMA)和2-甲基丙烯酰氧乙基磷酸胆碱(MPC)的聚合混合物涂覆PJAC,形成粘合润滑剂p(DMA-MPC)。MeHA@J@DM表现出优异的PJAC保护性能,增强了细胞活力、生物活性和润滑性能。我们评估了MeHA@J@DM在软骨细胞迁移中的有效性,其中幼年软骨表现出更高的效率和重塑能力。在兔体内软骨缺损模型中,MeHA@J@DM水凝胶显示出较好的软骨再生能力。我们的研究结果表明MeHA@J@DM具有PJAC植入的转化潜力,可以促进软骨再生并使关节软骨病变患者受益。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Frontiers in Bioengineering and Biotechnology
Frontiers in Bioengineering and Biotechnology Chemical Engineering-Bioengineering
CiteScore
8.30
自引率
5.30%
发文量
2270
审稿时长
12 weeks
期刊介绍: The translation of new discoveries in medicine to clinical routine has never been easy. During the second half of the last century, thanks to the progress in chemistry, biochemistry and pharmacology, we have seen the development and the application of a large number of drugs and devices aimed at the treatment of symptoms, blocking unwanted pathways and, in the case of infectious diseases, fighting the micro-organisms responsible. However, we are facing, today, a dramatic change in the therapeutic approach to pathologies and diseases. Indeed, the challenge of the present and the next decade is to fully restore the physiological status of the diseased organism and to completely regenerate tissue and organs when they are so seriously affected that treatments cannot be limited to the repression of symptoms or to the repair of damage. This is being made possible thanks to the major developments made in basic cell and molecular biology, including stem cell science, growth factor delivery, gene isolation and transfection, the advances in bioengineering and nanotechnology, including development of new biomaterials, biofabrication technologies and use of bioreactors, and the big improvements in diagnostic tools and imaging of cells, tissues and organs. In today`s world, an enhancement of communication between multidisciplinary experts, together with the promotion of joint projects and close collaborations among scientists, engineers, industry people, regulatory agencies and physicians are absolute requirements for the success of any attempt to develop and clinically apply a new biological therapy or an innovative device involving the collective use of biomaterials, cells and/or bioactive molecules. “Frontiers in Bioengineering and Biotechnology” aspires to be a forum for all people involved in the process by bridging the gap too often existing between a discovery in the basic sciences and its clinical application.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信