{"title":"3D printing of self-healing longevous multi-sensory e-skin.","authors":"Antonia Georgopoulou, Sudong Lee, Benhui Dai, Francesca Bono, Josie Hughes, Esther Amstad","doi":"10.1038/s43246-025-00839-7","DOIUrl":null,"url":null,"abstract":"<p><p>Electrically conductive hydrogels can simulate the sensory capabilities of natural skin, such that they are well-suited for electronic skin. Unfortunately, currently available electronic skin cannot detect multiple stimuli in a selective manner. Inspired by the deep eutectic solvent chemistry of the frog Lithobates Sylvaticus, we introduce a double network granular organogel capable of simultaneously detecting mechanical deformation, structural damage, changes in ambient temperature, and humidity. The deep eutectic solvent chemistry adds an additional benefit: Thanks to strong hydrogen bonding, our sensor can recover 97% of the Young's modulus after being damaged. The sensing performance and self-healing capacity are maintained within a temperature range of -20 °C to 50 °C for at least 2 weeks. We exploit the granular nature of this system to direct ink to write a cm-sized frog and e-skin wearables. We realize selective tactile perception by training recurrent neural networks to achieve sensory stimulus classification between the temperature and strain with 98% accuracy.</p>","PeriodicalId":10589,"journal":{"name":"Communications Materials","volume":"6 1","pages":"121"},"PeriodicalIF":7.5000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12165852/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications Materials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1038/s43246-025-00839-7","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/6/13 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Electrically conductive hydrogels can simulate the sensory capabilities of natural skin, such that they are well-suited for electronic skin. Unfortunately, currently available electronic skin cannot detect multiple stimuli in a selective manner. Inspired by the deep eutectic solvent chemistry of the frog Lithobates Sylvaticus, we introduce a double network granular organogel capable of simultaneously detecting mechanical deformation, structural damage, changes in ambient temperature, and humidity. The deep eutectic solvent chemistry adds an additional benefit: Thanks to strong hydrogen bonding, our sensor can recover 97% of the Young's modulus after being damaged. The sensing performance and self-healing capacity are maintained within a temperature range of -20 °C to 50 °C for at least 2 weeks. We exploit the granular nature of this system to direct ink to write a cm-sized frog and e-skin wearables. We realize selective tactile perception by training recurrent neural networks to achieve sensory stimulus classification between the temperature and strain with 98% accuracy.
期刊介绍:
Communications Materials, a selective open access journal within Nature Portfolio, is dedicated to publishing top-tier research, reviews, and commentary across all facets of materials science. The journal showcases significant advancements in specialized research areas, encompassing both fundamental and applied studies. Serving as an open access option for materials sciences, Communications Materials applies less stringent criteria for impact and significance compared to Nature-branded journals, including Nature Communications.