B Jack Pan, Michelle M Gierach, Sharon Stammerjohn, Oscar Schofield, Michael P Meredith, Rick A Reynolds, Maria Vernet, F Alexander Haumann, Alexander J Orona, Charles E Miller
{"title":"Impact of glacial meltwater on phytoplankton biomass along the Western Antarctic Peninsula.","authors":"B Jack Pan, Michelle M Gierach, Sharon Stammerjohn, Oscar Schofield, Michael P Meredith, Rick A Reynolds, Maria Vernet, F Alexander Haumann, Alexander J Orona, Charles E Miller","doi":"10.1038/s43247-025-02435-6","DOIUrl":null,"url":null,"abstract":"<p><p>The Western Antarctic Peninsula is undergoing rapid environmental change. Regional warming is causing increased glacial meltwater discharge, but the ecological impact of this meltwater over large spatiotemporal scales is not well understood. Here, we leverage 20 years of remote sensing data, reanalysis products, and field observations to assess the effects of sea surface glacial meltwater on phytoplankton biomass and highlight its importance as a key environmental driver for this region's productive ecosystem. We find a strong correlation between meltwater and phytoplankton chlorophyll-a across multiple time scales and datasets. We attribute this relationship to nutrient fertilization by glacial meltwater, with potential additional contribution from surface ocean stabilization associated with sea-ice presence. While high phytoplankton biomass typically follows prolonged winter sea-ice seasons and depends on the interplay between light and nutrient limitation, our results indicate that the positive effects of increased glacial meltwater on phytoplankton communities likely mitigate the negative impact of sea-ice loss in this region in recent years. Our findings underscore the critical need to consider glacial meltwater as a key ecological driver in polar coastal ecosystems.</p>","PeriodicalId":10530,"journal":{"name":"Communications Earth & Environment","volume":"6 1","pages":"456"},"PeriodicalIF":8.9000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12162344/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications Earth & Environment","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1038/s43247-025-02435-6","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/6/12 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
The Western Antarctic Peninsula is undergoing rapid environmental change. Regional warming is causing increased glacial meltwater discharge, but the ecological impact of this meltwater over large spatiotemporal scales is not well understood. Here, we leverage 20 years of remote sensing data, reanalysis products, and field observations to assess the effects of sea surface glacial meltwater on phytoplankton biomass and highlight its importance as a key environmental driver for this region's productive ecosystem. We find a strong correlation between meltwater and phytoplankton chlorophyll-a across multiple time scales and datasets. We attribute this relationship to nutrient fertilization by glacial meltwater, with potential additional contribution from surface ocean stabilization associated with sea-ice presence. While high phytoplankton biomass typically follows prolonged winter sea-ice seasons and depends on the interplay between light and nutrient limitation, our results indicate that the positive effects of increased glacial meltwater on phytoplankton communities likely mitigate the negative impact of sea-ice loss in this region in recent years. Our findings underscore the critical need to consider glacial meltwater as a key ecological driver in polar coastal ecosystems.
期刊介绍:
Communications Earth & Environment is an open access journal from Nature Portfolio publishing high-quality research, reviews and commentary in all areas of the Earth, environmental and planetary sciences. Research papers published by the journal represent significant advances that bring new insight to a specialized area in Earth science, planetary science or environmental science.
Communications Earth & Environment has a 2-year impact factor of 7.9 (2022 Journal Citation Reports®). Articles published in the journal in 2022 were downloaded 1,412,858 times. Median time from submission to the first editorial decision is 8 days.