João Pedro Pirola, Paige DeForest, Paulo R Protachevicz, Laura Fontenas, Ricardo F Ferreira, Rodrigo F O Pena
{"title":"Astrocytic signatures in neuronal activity: a machine learning-based identification approach.","authors":"João Pedro Pirola, Paige DeForest, Paulo R Protachevicz, Laura Fontenas, Ricardo F Ferreira, Rodrigo F O Pena","doi":"10.1007/s11571-025-10276-4","DOIUrl":null,"url":null,"abstract":"<p><p>This study investigates the expanding role of astrocytes, the predominant glial cells, in brain function, focusing on whether and how their presence influences neuronal network activity. We focus on particular network activities identified as synchronous and asynchronous. Using computational modeling to generate synthetic data, we examine these network states and find that astrocytes significantly affect synaptic communication, mainly in synchronous states. We use different methods of extracting data from a network and compare which is best for identifying glial cells, with mean firing rate emerging with higher accuracy. To reach the aforementioned conclusions, we applied various machine learning techniques, including Decision Trees, Random Forests, Bagging, Gradient Boosting, and Feedforward Neural Networks, the latter outperforming other models. Our findings reveal that glial cells play a crucial role in modulating synaptic activity, especially in synchronous networks, highlighting potential avenues for their detection with machine learning models through experimental accessible measures.</p><p><strong>Supplementary information: </strong>The online version contains supplementary material available at 10.1007/s11571-025-10276-4.</p>","PeriodicalId":10500,"journal":{"name":"Cognitive Neurodynamics","volume":"19 1","pages":"89"},"PeriodicalIF":3.1000,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12158901/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cognitive Neurodynamics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s11571-025-10276-4","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/6/11 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
This study investigates the expanding role of astrocytes, the predominant glial cells, in brain function, focusing on whether and how their presence influences neuronal network activity. We focus on particular network activities identified as synchronous and asynchronous. Using computational modeling to generate synthetic data, we examine these network states and find that astrocytes significantly affect synaptic communication, mainly in synchronous states. We use different methods of extracting data from a network and compare which is best for identifying glial cells, with mean firing rate emerging with higher accuracy. To reach the aforementioned conclusions, we applied various machine learning techniques, including Decision Trees, Random Forests, Bagging, Gradient Boosting, and Feedforward Neural Networks, the latter outperforming other models. Our findings reveal that glial cells play a crucial role in modulating synaptic activity, especially in synchronous networks, highlighting potential avenues for their detection with machine learning models through experimental accessible measures.
Supplementary information: The online version contains supplementary material available at 10.1007/s11571-025-10276-4.
期刊介绍:
Cognitive Neurodynamics provides a unique forum of communication and cooperation for scientists and engineers working in the field of cognitive neurodynamics, intelligent science and applications, bridging the gap between theory and application, without any preference for pure theoretical, experimental or computational models.
The emphasis is to publish original models of cognitive neurodynamics, novel computational theories and experimental results. In particular, intelligent science inspired by cognitive neuroscience and neurodynamics is also very welcome.
The scope of Cognitive Neurodynamics covers cognitive neuroscience, neural computation based on dynamics, computer science, intelligent science as well as their interdisciplinary applications in the natural and engineering sciences. Papers that are appropriate for non-specialist readers are encouraged.
1. There is no page limit for manuscripts submitted to Cognitive Neurodynamics. Research papers should clearly represent an important advance of especially broad interest to researchers and technologists in neuroscience, biophysics, BCI, neural computer and intelligent robotics.
2. Cognitive Neurodynamics also welcomes brief communications: short papers reporting results that are of genuinely broad interest but that for one reason and another do not make a sufficiently complete story to justify a full article publication. Brief Communications should consist of approximately four manuscript pages.
3. Cognitive Neurodynamics publishes review articles in which a specific field is reviewed through an exhaustive literature survey. There are no restrictions on the number of pages. Review articles are usually invited, but submitted reviews will also be considered.