Augustine C Onyema, Christopher DiForte, Rutika Patel, Sébastien F Poget, Sharon M Loverde
{"title":"Structural and Thermodynamic Impact of Oncogenic Mutations on the Nucleosome Core Particle.","authors":"Augustine C Onyema, Christopher DiForte, Rutika Patel, Sébastien F Poget, Sharon M Loverde","doi":"10.1016/j.bpj.2025.06.011","DOIUrl":null,"url":null,"abstract":"<p><p>The nucleosome core particle (NCP) is essential for chromatin structure and function, serving as the fundamental unit of eukaryotic chromatin. Oncogenic mutations in core histones disrupt chromatin dynamics, altering DNA repair and transcription processes. Here, we investigate the molecular consequences of two mutations-H2BE76K and H4R92T-using 36 μs of all-atom molecular dynamics simulations and experimental biophysical assays. These mutations destabilize the H2B-H4 interface by disrupting critical salt bridges and hydrogen bonds, reducing binding free energy at this interface. Principal component analysis reveals altered helix conformations and increased interhelical distances in mutant systems. Thermal stability assays (TSA) and differential scanning calorimetry (DSC) confirm that these mutations lower the dimer dissociation temperature and reduce enthalpy compared to the wild type. Taken together, our results elucidate how these mutations compromise nucleosome stability and propose mechanisms through which they could modulate chromatin accessibility and gene dysregulation in cancer.</p>","PeriodicalId":8922,"journal":{"name":"Biophysical journal","volume":" ","pages":""},"PeriodicalIF":3.2000,"publicationDate":"2025-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biophysical journal","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.bpj.2025.06.011","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
The nucleosome core particle (NCP) is essential for chromatin structure and function, serving as the fundamental unit of eukaryotic chromatin. Oncogenic mutations in core histones disrupt chromatin dynamics, altering DNA repair and transcription processes. Here, we investigate the molecular consequences of two mutations-H2BE76K and H4R92T-using 36 μs of all-atom molecular dynamics simulations and experimental biophysical assays. These mutations destabilize the H2B-H4 interface by disrupting critical salt bridges and hydrogen bonds, reducing binding free energy at this interface. Principal component analysis reveals altered helix conformations and increased interhelical distances in mutant systems. Thermal stability assays (TSA) and differential scanning calorimetry (DSC) confirm that these mutations lower the dimer dissociation temperature and reduce enthalpy compared to the wild type. Taken together, our results elucidate how these mutations compromise nucleosome stability and propose mechanisms through which they could modulate chromatin accessibility and gene dysregulation in cancer.
期刊介绍:
BJ publishes original articles, letters, and perspectives on important problems in modern biophysics. The papers should be written so as to be of interest to a broad community of biophysicists. BJ welcomes experimental studies that employ quantitative physical approaches for the study of biological systems, including or spanning scales from molecule to whole organism. Experimental studies of a purely descriptive or phenomenological nature, with no theoretical or mechanistic underpinning, are not appropriate for publication in BJ. Theoretical studies should offer new insights into the understanding ofexperimental results or suggest new experimentally testable hypotheses. Articles reporting significant methodological or technological advances, which have potential to open new areas of biophysical investigation, are also suitable for publication in BJ. Papers describing improvements in accuracy or speed of existing methods or extra detail within methods described previously are not suitable for BJ.