Eicosapentaenoic acid inhibits cholesterol efflux pathways from cholesterol-loaded human THP-1 macrophages by reducing the hydrolysis of cholesteryl esters mediated by carboxylesterase 1
Maxime Nowak , Hani Dakroub , Benoît Noël , Delphine Rousseau-Ralliard , Sana Slimene , Nathalie Abi-Saleh , Morgane Benardeau , Benoît Vedie , Anne-Marie Cassard , Jean-Louis Paul , Natalie Fournier
{"title":"Eicosapentaenoic acid inhibits cholesterol efflux pathways from cholesterol-loaded human THP-1 macrophages by reducing the hydrolysis of cholesteryl esters mediated by carboxylesterase 1","authors":"Maxime Nowak , Hani Dakroub , Benoît Noël , Delphine Rousseau-Ralliard , Sana Slimene , Nathalie Abi-Saleh , Morgane Benardeau , Benoît Vedie , Anne-Marie Cassard , Jean-Louis Paul , Natalie Fournier","doi":"10.1016/j.bbalip.2025.159646","DOIUrl":null,"url":null,"abstract":"<div><div>A diet high in n-3 polyunsaturated fatty acids (PUFAs), particularly eicosapentaenoic acid (EPA) (C20:5 n-3), is cardioprotective. PUFAs integrate into membrane phospholipids, altering membrane protein function. We investigated the effects of various PUFAs on the anti-atherogenic cholesterol efflux pathways from cholesterol-loaded human THP-1 macrophages. Cells were supplemented (or not: standard cells) with 70 μM EPA, 50 μM arachidonic acid (AA) (C20:4 n-6) or 15 μM docosahexaenoic acid (DHA) (C22:6 n-3) for an extended duration to simulate a dietary strategy. EPA led to a 13 % decrease in ABCA1-mediated cholesterol efflux and to a 17 % decrease in SR-BI/ABCG1-mediated cholesterol efflux without affecting the expression of efflux proteins, while AA and DHA showed no impact. Compared to standard cells, EPA cells exhibited higher EPA levels along with reduced AA levels. EPA cells showed increased amounts of triglycerides and cholesteryl esters (CE) without a change in the acetylated LDL uptake. EPA did not influence the phenotype of macrophages according to surface markers and released cytokines. The incorporation of EPA did not disrupt efflux in macrophages loaded with free cholesterol. Conversely, EPA decreased CE hydrolysis from lipid droplets by 22 %. The diminished cholesterol efflux was not related to triglyceride accumulation or to variations in apo E secretion. EPA reduced the expression of carboxylesterase 1 (CES1) protein by 17 % without affecting the expression of neutral cholesterol ester hydrolase 1 (NCEH1). In conclusion, the membrane incorporation of EPA hinders the cholesterol efflux pathways in THP-1 foam cells likely by impairing the CE hydrolysis mediated by carboxylesterase 1.</div></div>","PeriodicalId":8815,"journal":{"name":"Biochimica et biophysica acta. Molecular and cell biology of lipids","volume":"1870 6","pages":"Article 159646"},"PeriodicalIF":3.9000,"publicationDate":"2025-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochimica et biophysica acta. Molecular and cell biology of lipids","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S138819812500054X","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
A diet high in n-3 polyunsaturated fatty acids (PUFAs), particularly eicosapentaenoic acid (EPA) (C20:5 n-3), is cardioprotective. PUFAs integrate into membrane phospholipids, altering membrane protein function. We investigated the effects of various PUFAs on the anti-atherogenic cholesterol efflux pathways from cholesterol-loaded human THP-1 macrophages. Cells were supplemented (or not: standard cells) with 70 μM EPA, 50 μM arachidonic acid (AA) (C20:4 n-6) or 15 μM docosahexaenoic acid (DHA) (C22:6 n-3) for an extended duration to simulate a dietary strategy. EPA led to a 13 % decrease in ABCA1-mediated cholesterol efflux and to a 17 % decrease in SR-BI/ABCG1-mediated cholesterol efflux without affecting the expression of efflux proteins, while AA and DHA showed no impact. Compared to standard cells, EPA cells exhibited higher EPA levels along with reduced AA levels. EPA cells showed increased amounts of triglycerides and cholesteryl esters (CE) without a change in the acetylated LDL uptake. EPA did not influence the phenotype of macrophages according to surface markers and released cytokines. The incorporation of EPA did not disrupt efflux in macrophages loaded with free cholesterol. Conversely, EPA decreased CE hydrolysis from lipid droplets by 22 %. The diminished cholesterol efflux was not related to triglyceride accumulation or to variations in apo E secretion. EPA reduced the expression of carboxylesterase 1 (CES1) protein by 17 % without affecting the expression of neutral cholesterol ester hydrolase 1 (NCEH1). In conclusion, the membrane incorporation of EPA hinders the cholesterol efflux pathways in THP-1 foam cells likely by impairing the CE hydrolysis mediated by carboxylesterase 1.
期刊介绍:
BBA Molecular and Cell Biology of Lipids publishes papers on original research dealing with novel aspects of molecular genetics related to the lipidome, the biosynthesis of lipids, the role of lipids in cells and whole organisms, the regulation of lipid metabolism and function, and lipidomics in all organisms. Manuscripts should significantly advance the understanding of the molecular mechanisms underlying biological processes in which lipids are involved. Papers detailing novel methodology must report significant biochemical, molecular, or functional insight in the area of lipids.