{"title":"Diversity of extracellular vesicle sources in atherosclerosis: role and therapeutic application.","authors":"Yuan Zhang, Wendiao Zhang, Zhiwen Wu, Yong Chen","doi":"10.1007/s10456-025-09983-7","DOIUrl":null,"url":null,"abstract":"<p><p>Extracellular vesicles (EVs) are phospholipid bilayer membrane structures secreted by cells and widely present in blood or body fluids, playing critical roles in cell communication and homeostasis. Increasing evidence has implicated EVs dysfunction in the pathogenesis of various cardiovascular diseases (CVD), including atherosclerosis (AS), ischemic heart disease, heart failure, aortic lesions, and valvular lesions. Using EVs derived from diseases or multiple tissue types to illuminate the functional mechanisms of EVs will promote pathological studies and drug development. EVs including exosomes, microvesicles, and apoptotic bodies, play key roles in the cellular physiological processes linked to AS, notably the recently developed engineering strategies applied to EVs have provided a new avenue for elucidating the mechanisms underlying the development and pathology of AS. To help researchers develop robust and reproducible methods that recapitulate in-vivo signatures of EVs to study AS development and pathology, this review summarized the current methods used to isolate or generate EVs and provided opinions on the use of EVs for disease and functional studies through collecting EVs derived from different kinds of cells or diseases in AS, which are the aspects that have not been generalized in previous reviews. In essence, EVs and their derivatives offer a novel approach to understanding the complex etiology of AS, and serve as a substantial basis for the discovery of potential diagnostic biomarkers and therapeutic targets.</p>","PeriodicalId":7886,"journal":{"name":"Angiogenesis","volume":"28 3","pages":"34"},"PeriodicalIF":9.2000,"publicationDate":"2025-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Angiogenesis","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s10456-025-09983-7","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PERIPHERAL VASCULAR DISEASE","Score":null,"Total":0}
引用次数: 0
Abstract
Extracellular vesicles (EVs) are phospholipid bilayer membrane structures secreted by cells and widely present in blood or body fluids, playing critical roles in cell communication and homeostasis. Increasing evidence has implicated EVs dysfunction in the pathogenesis of various cardiovascular diseases (CVD), including atherosclerosis (AS), ischemic heart disease, heart failure, aortic lesions, and valvular lesions. Using EVs derived from diseases or multiple tissue types to illuminate the functional mechanisms of EVs will promote pathological studies and drug development. EVs including exosomes, microvesicles, and apoptotic bodies, play key roles in the cellular physiological processes linked to AS, notably the recently developed engineering strategies applied to EVs have provided a new avenue for elucidating the mechanisms underlying the development and pathology of AS. To help researchers develop robust and reproducible methods that recapitulate in-vivo signatures of EVs to study AS development and pathology, this review summarized the current methods used to isolate or generate EVs and provided opinions on the use of EVs for disease and functional studies through collecting EVs derived from different kinds of cells or diseases in AS, which are the aspects that have not been generalized in previous reviews. In essence, EVs and their derivatives offer a novel approach to understanding the complex etiology of AS, and serve as a substantial basis for the discovery of potential diagnostic biomarkers and therapeutic targets.
期刊介绍:
Angiogenesis, a renowned international journal, seeks to publish high-quality original articles and reviews on the cellular and molecular mechanisms governing angiogenesis in both normal and pathological conditions. By serving as a primary platform for swift communication within the field of angiogenesis research, this multidisciplinary journal showcases pioneering experimental studies utilizing molecular techniques, in vitro methods, animal models, and clinical investigations into angiogenic diseases. Furthermore, Angiogenesis sheds light on cutting-edge therapeutic strategies for promoting or inhibiting angiogenesis, while also highlighting fresh markers and techniques for disease diagnosis and prognosis.