Ke Ma, Sixian Chen, Jun Zhang, Xinglong Jia, Rufeng Fan, Mingjun Li, Li Dong, Minjia Tan, Wensi Zhao, Dong Xie
{"title":"Characterization of endogenous SUMOylation sites by click chemistry-based proteomics.","authors":"Ke Ma, Sixian Chen, Jun Zhang, Xinglong Jia, Rufeng Fan, Mingjun Li, Li Dong, Minjia Tan, Wensi Zhao, Dong Xie","doi":"10.1007/s00216-025-05957-2","DOIUrl":null,"url":null,"abstract":"<p><p>SUMOylation, an essential ubiquitin-like modification in eukaryotes, plays vital roles in both physiological and pathological regulation, positioning it as a promising therapeutic target. However, the low abundance of SUMOylation and the high enzymatic activity of sentrin/SUMO-specific proteases (SENPs) complicate the identification of endogenous sites. In this study, we integrated click chemistry, acid cleavage, and SUMOylated peptide enrichment into the workflow and developed a promising methodology for system-wide identification of SUMOylation sites. In total, we identified 962 endogenous SUMOylation sites in HEK293T cells under heat shock conditions, which showed good complementarity with previous studies. Our approach uncovered 105 potentially new sites, including SSRP1-K248/K319/K612, DHX9-K806, and ILF3-K241, which showed high conservation and were located in functionally important domains. The overlap between SUMOylation sites and the known ubiquitination or acetylation sites suggested the potential PTM crosstalks. KEGG analysis further suggested SUMOylated proteins were associated with carbon metabolism and biosynthesis of amino acids pathways. Collectively, this study provides a valuable tool for systematically identifying SUMOylation sites, advancing further biological understanding of their dynamic regulatory networks and pathophysiological mechanisms.</p>","PeriodicalId":462,"journal":{"name":"Analytical and Bioanalytical Chemistry","volume":" ","pages":""},"PeriodicalIF":3.8000,"publicationDate":"2025-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analytical and Bioanalytical Chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1007/s00216-025-05957-2","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
SUMOylation, an essential ubiquitin-like modification in eukaryotes, plays vital roles in both physiological and pathological regulation, positioning it as a promising therapeutic target. However, the low abundance of SUMOylation and the high enzymatic activity of sentrin/SUMO-specific proteases (SENPs) complicate the identification of endogenous sites. In this study, we integrated click chemistry, acid cleavage, and SUMOylated peptide enrichment into the workflow and developed a promising methodology for system-wide identification of SUMOylation sites. In total, we identified 962 endogenous SUMOylation sites in HEK293T cells under heat shock conditions, which showed good complementarity with previous studies. Our approach uncovered 105 potentially new sites, including SSRP1-K248/K319/K612, DHX9-K806, and ILF3-K241, which showed high conservation and were located in functionally important domains. The overlap between SUMOylation sites and the known ubiquitination or acetylation sites suggested the potential PTM crosstalks. KEGG analysis further suggested SUMOylated proteins were associated with carbon metabolism and biosynthesis of amino acids pathways. Collectively, this study provides a valuable tool for systematically identifying SUMOylation sites, advancing further biological understanding of their dynamic regulatory networks and pathophysiological mechanisms.
期刊介绍:
Analytical and Bioanalytical Chemistry’s mission is the rapid publication of excellent and high-impact research articles on fundamental and applied topics of analytical and bioanalytical measurement science. Its scope is broad, and ranges from novel measurement platforms and their characterization to multidisciplinary approaches that effectively address important scientific problems. The Editors encourage submissions presenting innovative analytical research in concept, instrumentation, methods, and/or applications, including: mass spectrometry, spectroscopy, and electroanalysis; advanced separations; analytical strategies in “-omics” and imaging, bioanalysis, and sampling; miniaturized devices, medical diagnostics, sensors; analytical characterization of nano- and biomaterials; chemometrics and advanced data analysis.