Influence of Ink Composition and Drying Technique on the Performance and Stability of Fe-N-C-Based High-Temperature Proton Exchange Membrane Fuel Cells.

IF 6.6 2区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
ChemSusChem Pub Date : 2025-06-16 DOI:10.1002/cssc.202500905
Tanja Zierdt, Md Raziun Bin Mamtaz, Tom Eek, Julia Müller-Hülstede, Steffen Rehse, Quentin Meyer, Dana Schonvogel, Peter Wagner, Chuan Zhao, Michael Wark, K Andreas Friedrich
{"title":"Influence of Ink Composition and Drying Technique on the Performance and Stability of Fe-N-C-Based High-Temperature Proton Exchange Membrane Fuel Cells.","authors":"Tanja Zierdt, Md Raziun Bin Mamtaz, Tom Eek, Julia Müller-Hülstede, Steffen Rehse, Quentin Meyer, Dana Schonvogel, Peter Wagner, Chuan Zhao, Michael Wark, K Andreas Friedrich","doi":"10.1002/cssc.202500905","DOIUrl":null,"url":null,"abstract":"<p><p>Fe-N-C catalysts have emerged as a potentially cost-effective alternative to Pt-based catalysts in high-temperature polymer electrolyte membrane fuel cell cathodes. However, the optimal design and deposition method of the Pt-free catalyst layer remain unclear. Herein, the effect of conventional oven drying compared with freeze-drying on the performance of commercial Fe-N-C catalyst layers is investigated. The gas diffusion electrodes are fabricated by doctor blade coating. Freezing the wet catalyst layer at -26 °C and subsequent sublimation of the solvents leads to a 45 % increase in mass-normalized peak power density compared to the conventional oven drying. This is attributed to a templating mechanism of the solvents, resulting in a thicker catalyst layer and improved acid retention, which enables optimal reactant transport. In contrast, freeze-drying with liquid nitrogen negatively impacts the catalyst morphology, leading to reduced porosity and performance. During 100 h of operation, the performance decreases by a similar magnitude, regardless of the fabrication method used. Operando electrochemical impedance spectroscopy with the distribution of relaxation times shows no catalyst deactivation through the fabrication methods. The results highlight the importance of optimizing catalyst layer fabrication methods for Fe-N-C catalysts to achieve improved performance in fuel cell applications.</p>","PeriodicalId":149,"journal":{"name":"ChemSusChem","volume":" ","pages":"e2500905"},"PeriodicalIF":6.6000,"publicationDate":"2025-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ChemSusChem","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/cssc.202500905","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Fe-N-C catalysts have emerged as a potentially cost-effective alternative to Pt-based catalysts in high-temperature polymer electrolyte membrane fuel cell cathodes. However, the optimal design and deposition method of the Pt-free catalyst layer remain unclear. Herein, the effect of conventional oven drying compared with freeze-drying on the performance of commercial Fe-N-C catalyst layers is investigated. The gas diffusion electrodes are fabricated by doctor blade coating. Freezing the wet catalyst layer at -26 °C and subsequent sublimation of the solvents leads to a 45 % increase in mass-normalized peak power density compared to the conventional oven drying. This is attributed to a templating mechanism of the solvents, resulting in a thicker catalyst layer and improved acid retention, which enables optimal reactant transport. In contrast, freeze-drying with liquid nitrogen negatively impacts the catalyst morphology, leading to reduced porosity and performance. During 100 h of operation, the performance decreases by a similar magnitude, regardless of the fabrication method used. Operando electrochemical impedance spectroscopy with the distribution of relaxation times shows no catalyst deactivation through the fabrication methods. The results highlight the importance of optimizing catalyst layer fabrication methods for Fe-N-C catalysts to achieve improved performance in fuel cell applications.

油墨组成和干燥技术对fe - n - c基高温质子交换膜燃料电池性能和稳定性的影响。
Fe-N-C催化剂已成为高温聚合物电解质膜燃料电池阴极中具有潜在成本效益的pt基催化剂替代品。然而,无pt催化剂层的最佳设计和沉积方法尚不清楚。在本研究中,我们研究了常规烘箱干燥与冷冻干燥对商用Fe-N-C催化剂层性能的影响。气体扩散电极采用医生刀涂层制备。将湿催化剂层冷冻在-26°C,随后升华溶剂,与烤箱常规干燥相比,质量标准化峰值功率密度增加了45%。这是由于溶剂的模板机制,导致催化剂层更厚,改善了酸潴留,从而实现了最佳的反应物运输。相比之下,液氮冷冻干燥会对催化剂的形貌产生负面影响,导致孔隙率和性能降低。在100小时的运行期间,无论使用何种制造方法,性能都会下降相似的幅度。电化学阻抗谱与弛豫时间的分布表明,该制备方法没有使催化剂失活。我们的研究结果强调了优化Fe-N-C催化剂的催化剂层制造方法以提高燃料电池应用性能的重要性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ChemSusChem
ChemSusChem 化学-化学综合
CiteScore
15.80
自引率
4.80%
发文量
555
审稿时长
1.8 months
期刊介绍: ChemSusChem Impact Factor (2016): 7.226 Scope: Interdisciplinary journal Focuses on research at the interface of chemistry and sustainability Features the best research on sustainability and energy Areas Covered: Chemistry Materials Science Chemical Engineering Biotechnology
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信