Yuan Gao, Jiawei Zhou, Chen-Chen Wang, Zong-Hao Wang, Nian-Dong Mao, Meng-Lan He, Peng-Peng Zhang, Ping Huang, Guo-Wei Ye, Yu-Qing Zhang, Feng-Hui Tang, Hang Zhang, Tian Xie, Xiang-Yang Ye
{"title":"Novel ATR/PARP1 Dual Inhibitors Demonstrate Synergistic Antitumor Efficacy in Triple-Negative Breast Cancer Models.","authors":"Yuan Gao, Jiawei Zhou, Chen-Chen Wang, Zong-Hao Wang, Nian-Dong Mao, Meng-Lan He, Peng-Peng Zhang, Ping Huang, Guo-Wei Ye, Yu-Qing Zhang, Feng-Hui Tang, Hang Zhang, Tian Xie, Xiang-Yang Ye","doi":"10.1002/advs.202501916","DOIUrl":null,"url":null,"abstract":"<p><p>Concomitant inhibition of ataxia telangiectasia and Rad3-related protein (ATR) and poly ADP-ribose Polymerase (PARP) pathways is a promising strategy in cancer therapy, potentially expanding the clinical utility of ATR inhibitor (ATRi) and PARP inhibitor (PARPi). A novel series of ATR/PARP1 dual inhibitors is developed through the pharmacophore fusion of AZD6738 and Olaparib. Among them, B8 emerges as the most promising candidate, exhibiting potent ATR (IC<sub>50</sub>: 17.3 nM) and PARP1 (IC<sub>50</sub>: 0.38 nM) inhibition. B8 effectively reduced cell viability, induced apoptosis, and caused G2/M cell cycle arrest in TNBC cells. Additionally, B8 significantly impaired TNBC colony formation, migration, and invasion. Mechanistically, B8 induces DNA damage, evidenced by increased γH2AX levels. In in vivo studies, B8 suppressed tumor growth more effectively than the combination in MDA-MB-468 xenografted mice, with no significant body weight loss. B8 also enhanced γH2AX expression in tumor tissues. These findings confirm the synergistic effects of ATR/PARP1 co-inhibition and highlight the potential of this novel inhibitor class for TNBC therapy.</p>","PeriodicalId":117,"journal":{"name":"Advanced Science","volume":" ","pages":"e01916"},"PeriodicalIF":14.3000,"publicationDate":"2025-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Science","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/advs.202501916","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Concomitant inhibition of ataxia telangiectasia and Rad3-related protein (ATR) and poly ADP-ribose Polymerase (PARP) pathways is a promising strategy in cancer therapy, potentially expanding the clinical utility of ATR inhibitor (ATRi) and PARP inhibitor (PARPi). A novel series of ATR/PARP1 dual inhibitors is developed through the pharmacophore fusion of AZD6738 and Olaparib. Among them, B8 emerges as the most promising candidate, exhibiting potent ATR (IC50: 17.3 nM) and PARP1 (IC50: 0.38 nM) inhibition. B8 effectively reduced cell viability, induced apoptosis, and caused G2/M cell cycle arrest in TNBC cells. Additionally, B8 significantly impaired TNBC colony formation, migration, and invasion. Mechanistically, B8 induces DNA damage, evidenced by increased γH2AX levels. In in vivo studies, B8 suppressed tumor growth more effectively than the combination in MDA-MB-468 xenografted mice, with no significant body weight loss. B8 also enhanced γH2AX expression in tumor tissues. These findings confirm the synergistic effects of ATR/PARP1 co-inhibition and highlight the potential of this novel inhibitor class for TNBC therapy.
期刊介绍:
Advanced Science is a prestigious open access journal that focuses on interdisciplinary research in materials science, physics, chemistry, medical and life sciences, and engineering. The journal aims to promote cutting-edge research by employing a rigorous and impartial review process. It is committed to presenting research articles with the highest quality production standards, ensuring maximum accessibility of top scientific findings. With its vibrant and innovative publication platform, Advanced Science seeks to revolutionize the dissemination and organization of scientific knowledge.