Magnetic-Driven Torque-Induced Electrical Stimulation for Millisecond-Scale Wireless Neuromodulation

IF 9.6 2区 医学 Q1 ENGINEERING, BIOMEDICAL
Chao-Chun Cheng, Li-Ling Chen, Guan-Jhong Tseng, Jun-Xuan Huang, Yen-Jing Ting, Po-Han Chiang
{"title":"Magnetic-Driven Torque-Induced Electrical Stimulation for Millisecond-Scale Wireless Neuromodulation","authors":"Chao-Chun Cheng,&nbsp;Li-Ling Chen,&nbsp;Guan-Jhong Tseng,&nbsp;Jun-Xuan Huang,&nbsp;Yen-Jing Ting,&nbsp;Po-Han Chiang","doi":"10.1002/adhm.202500805","DOIUrl":null,"url":null,"abstract":"<p>Wireless neuromodulation using nanoparticles, offering minimally invasive alternatives to conventional deep brain stimulation (DBS) while reducing the risks associated with hardware implants, has gained significant traction over the past decade. Nevertheless, ensuring millisecond-scale wireless DBS for the precise temporal control of neuronal activity remains challenging. This study reports magnetic-driven torque-induced electrical stimulation (MagTIES), a torque-based magnetoelectric neuromodulation method. By utilizing magnetic nanodiscs to generate torque under alternating magnetic fields (AMFs), the MagTIES induces a piezoelectric effect in piezoelectric nanoparticles, thereby overcoming the limitations of traditional magnetostriction-based systems. With an AMF (50 mT at ≈10 Hz), the proposed approach triggers neuronal activity both in vitro and in vivo, specifically in the deep brain region of the amygdala, within milliseconds. Furthermore, MagTIES enables the fine-tuning of amygdala brain oscillations through the precise modulation of the AMF frequency. By combining high spatial and temporal precision with minimal invasiveness, MagTIES provides an innovative approach for advancing neuroscience research with potential applications in understanding neural circuits and developing innovative therapies.</p>","PeriodicalId":113,"journal":{"name":"Advanced Healthcare Materials","volume":"14 20","pages":""},"PeriodicalIF":9.6000,"publicationDate":"2025-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12333473/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Healthcare Materials","FirstCategoryId":"5","ListUrlMain":"https://advanced.onlinelibrary.wiley.com/doi/10.1002/adhm.202500805","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Wireless neuromodulation using nanoparticles, offering minimally invasive alternatives to conventional deep brain stimulation (DBS) while reducing the risks associated with hardware implants, has gained significant traction over the past decade. Nevertheless, ensuring millisecond-scale wireless DBS for the precise temporal control of neuronal activity remains challenging. This study reports magnetic-driven torque-induced electrical stimulation (MagTIES), a torque-based magnetoelectric neuromodulation method. By utilizing magnetic nanodiscs to generate torque under alternating magnetic fields (AMFs), the MagTIES induces a piezoelectric effect in piezoelectric nanoparticles, thereby overcoming the limitations of traditional magnetostriction-based systems. With an AMF (50 mT at ≈10 Hz), the proposed approach triggers neuronal activity both in vitro and in vivo, specifically in the deep brain region of the amygdala, within milliseconds. Furthermore, MagTIES enables the fine-tuning of amygdala brain oscillations through the precise modulation of the AMF frequency. By combining high spatial and temporal precision with minimal invasiveness, MagTIES provides an innovative approach for advancing neuroscience research with potential applications in understanding neural circuits and developing innovative therapies.

Abstract Image

Abstract Image

磁驱动转矩感应电刺激用于毫秒级无线神经调节。
使用纳米颗粒的无线神经调节,在降低硬件植入风险的同时,提供了传统深部脑刺激(DBS)的微创替代方案,在过去十年中获得了显著的关注。然而,确保毫秒级的无线DBS对神经元活动进行精确的时间控制仍然具有挑战性。本研究报道了磁驱动转矩诱导电刺激(MagTIES),一种基于转矩的磁电神经调节方法。通过利用磁性纳米片在交变磁场(AMFs)下产生转矩,MagTIES在压电纳米颗粒中诱导压电效应,从而克服了传统基于磁致伸缩的系统的局限性。使用AMF (50 mT≈10 Hz),该方法可以在几毫秒内触发体外和体内的神经元活动,特别是在杏仁核的脑深部区域。此外,MagTIES可以通过精确调制AMF频率来微调杏仁核的大脑振荡。通过将高空间和时间精度与最小侵入性相结合,MagTIES为推进神经科学研究提供了一种创新方法,在理解神经回路和开发创新疗法方面具有潜在的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Advanced Healthcare Materials
Advanced Healthcare Materials 工程技术-生物材料
CiteScore
14.40
自引率
3.00%
发文量
600
审稿时长
1.8 months
期刊介绍: Advanced Healthcare Materials, a distinguished member of the esteemed Advanced portfolio, has been dedicated to disseminating cutting-edge research on materials, devices, and technologies for enhancing human well-being for over ten years. As a comprehensive journal, it encompasses a wide range of disciplines such as biomaterials, biointerfaces, nanomedicine and nanotechnology, tissue engineering, and regenerative medicine.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信