Revealing the Ferroelectric Fatigue Pathways in HfO₂ Film.

IF 10.7 2区 材料科学 Q1 CHEMISTRY, PHYSICAL
Yufeng Xue, Qi Hu, Zhongfei Xu, Tongcai Yue, Shuning Lv, Chuang Xue, Tingxiao Xie, Chuanjia Tong, Tengfei Cao, Gilberto Teobaldi, Li-Min Liu
{"title":"Revealing the Ferroelectric Fatigue Pathways in HfO₂ Film.","authors":"Yufeng Xue, Qi Hu, Zhongfei Xu, Tongcai Yue, Shuning Lv, Chuang Xue, Tingxiao Xie, Chuanjia Tong, Tengfei Cao, Gilberto Teobaldi, Li-Min Liu","doi":"10.1002/smtd.202402176","DOIUrl":null,"url":null,"abstract":"<p><p>Hafnium oxide (HfO₂) has emerged as a transformative material for next-generation non-volatile memory technologies due to its unique ability to exhibit ferroelectricity in ultrathin films. Its practical application is critically hindered by polarization fatigue and depolarization phenomena, while the inherent complexity of these transitions between ferroelectric and paraelectric state in HfO₂ has posed significant challenges. Here, symmetry analysis and with first-principles calculations is leveraged to systematically explore all potential transition pathways from the ferroelectric oIII/oIV phases to the paraelectric mI/mII phases. The results demonstrate that multiple-pathways involving intermediate phases, such as <math> <semantics><mrow><mi>F</mi> <mi>m</mi> <mover><mn>3</mn> <mo>¯</mo></mover> <mi>m</mi></mrow> <annotation>$Fm\\bar 3m$</annotation></semantics> </math> , <math> <semantics><mrow><mi>P</mi> <msub><mn>4</mn> <mn>2</mn></msub> <mo>/</mo> <mi>nmc</mi></mrow> <annotation>$P{4}_{2}/\\textit{nmc}$</annotation></semantics> </math> , and <math> <semantics><mrow><mi>P</mi> <msub><mn>4</mn> <mn>2</mn></msub> <mo>/</mo> <mi>nmc</mi></mrow> <annotation>$P{4}_{2}/\\textit{nmc}$</annotation></semantics> </math> , require relatively high energy barriers ranging from 0.33 to 0.71 eV per unit cell. In contrast, a direct transition from oIII to mI requires overcoming an energy barrier of only 0.11 eV per unit cell, suggesting that ferroelectric fatigue can occur along the direct pathway rather than multiple ones. This direct transition induces an in-plane expansion of ≈4%, thus applying in-plane confinement or compressive strain can be effective in suppressing fatigue. These findings provide a comprehensive framework for elucidating the phase transition dynamics and mechanisms underlying ferroelectric fatigue in HfO₂, offering critical insights for optimizing its integration into advanced memory technologies.</p>","PeriodicalId":229,"journal":{"name":"Small Methods","volume":" ","pages":"e2402176"},"PeriodicalIF":10.7000,"publicationDate":"2025-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Small Methods","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/smtd.202402176","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Hafnium oxide (HfO₂) has emerged as a transformative material for next-generation non-volatile memory technologies due to its unique ability to exhibit ferroelectricity in ultrathin films. Its practical application is critically hindered by polarization fatigue and depolarization phenomena, while the inherent complexity of these transitions between ferroelectric and paraelectric state in HfO₂ has posed significant challenges. Here, symmetry analysis and with first-principles calculations is leveraged to systematically explore all potential transition pathways from the ferroelectric oIII/oIV phases to the paraelectric mI/mII phases. The results demonstrate that multiple-pathways involving intermediate phases, such as F m 3 ¯ m $Fm\bar 3m$ , P 4 2 / nmc $P{4}_{2}/\textit{nmc}$ , and P 4 2 / nmc $P{4}_{2}/\textit{nmc}$ , require relatively high energy barriers ranging from 0.33 to 0.71 eV per unit cell. In contrast, a direct transition from oIII to mI requires overcoming an energy barrier of only 0.11 eV per unit cell, suggesting that ferroelectric fatigue can occur along the direct pathway rather than multiple ones. This direct transition induces an in-plane expansion of ≈4%, thus applying in-plane confinement or compressive strain can be effective in suppressing fatigue. These findings provide a comprehensive framework for elucidating the phase transition dynamics and mechanisms underlying ferroelectric fatigue in HfO₂, offering critical insights for optimizing its integration into advanced memory technologies.

揭示HfO 2薄膜中的铁电疲劳途径。
氧化铪(HfO₂)由于其在超薄薄膜中表现出铁电性的独特能力,已成为下一代非易失性存储技术的变革性材料。它的实际应用受到极化疲劳和去极化现象的严重阻碍,而HfO₂中铁电态和准电态之间这些转变的固有复杂性提出了重大挑战。在这里,对称性分析和第一性原理计算被用于系统地探索从铁电oIII/oIV相到准电mI/mII相的所有潜在转变途径。结果表明,涉及中间相的多路径,如fm3¯m $Fm\bar 3m$, p4.2 / nmc $P{4}_{2}/\textit{nmc}$和p4.2 / nmc $P{4}_{2}/\textit{nmc}$,需要相对较高的能量垒,范围为0.33至0.71 eV /单位电池。相比之下,从oIII到mI的直接转变只需要克服每单元电池0.11 eV的能量势垒,这表明铁电疲劳可以沿着直接途径而不是多条途径发生。这种直接跃迁引起平面内展开式≈4%, thus applying in-plane confinement or compressive strain can be effective in suppressing fatigue. These findings provide a comprehensive framework for elucidating the phase transition dynamics and mechanisms underlying ferroelectric fatigue in HfO₂, offering critical insights for optimizing its integration into advanced memory technologies.
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Small Methods
Small Methods Materials Science-General Materials Science
CiteScore
17.40
自引率
1.60%
发文量
347
期刊介绍: Small Methods is a multidisciplinary journal that publishes groundbreaking research on methods relevant to nano- and microscale research. It welcomes contributions from the fields of materials science, biomedical science, chemistry, and physics, showcasing the latest advancements in experimental techniques. With a notable 2022 Impact Factor of 12.4 (Journal Citation Reports, Clarivate Analytics, 2023), Small Methods is recognized for its significant impact on the scientific community. The online ISSN for Small Methods is 2366-9608.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信