Dmitrii Iudin , Léon J. J. A. Gerridzen , Paulina N. Bernal , Carl C. L. Schuurmans , Myriam Neumann , Lam Nguyen , Mies J. van Steenbergen , Jaimie Hak , Wanlu Li , Cristina Casadidio , Anne Metje van Genderen , Rosalinde Masereeuw , Riccardo Levato , Yu Shrike Zhang , Bas G. P. van Ravensteijn , Tina Vermonden
{"title":"In-Depth Investigation of Electrostatic Interaction-Based Hydrogel Shrinking for Volumetric Printing and Tissue Engineering Applications","authors":"Dmitrii Iudin , Léon J. J. A. Gerridzen , Paulina N. Bernal , Carl C. L. Schuurmans , Myriam Neumann , Lam Nguyen , Mies J. van Steenbergen , Jaimie Hak , Wanlu Li , Cristina Casadidio , Anne Metje van Genderen , Rosalinde Masereeuw , Riccardo Levato , Yu Shrike Zhang , Bas G. P. van Ravensteijn , Tina Vermonden","doi":"10.1021/acs.biomac.5c00117","DOIUrl":null,"url":null,"abstract":"<div><div>Three-dimensional printing of hydrogels enables the fabrication of complex structures for tissue engineering. Postprinting shrinking via electrostatic interactions offers a promising strategy to better replicate the size and intricacy of native tissues. This study explores hyaluronic acid (HA)-based hydrogels that undergo shrinking upon polycation penetration and complexation focusing on the influence of the HA macromer concentration, molecular weight, cross-linking density, hydrogel initial volume, and polycation properties on shrinking efficiency. To support cell adhesion, RGD peptides were incorporated into the HA network. The polycation concentration strongly affected cell viability: a high concentration of 1 wt % resulted in reduced viability, while 0.1 wt % preserved it with effective shrinkage. Volumetrically printed structures were reduced up to 9 times in volume, achieving features as small as 42 ± 6 μm. This shrinking approach enables the fabrication of hydrogel structures with significantly reduced dimensions, making it a powerful tool for developing high-precision hydrogel structures for tissue engineering.</div></div><div><div><span><figure><span><img><ol><li><span><span>Download: <span>Download high-res image (127KB)</span></span></span></li><li><span><span>Download: <span>Download full-size image</span></span></span></li></ol></span></figure></span></div></div>","PeriodicalId":30,"journal":{"name":"Biomacromolecules","volume":"26 7","pages":"Pages 4108-4123"},"PeriodicalIF":5.4000,"publicationDate":"2025-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomacromolecules","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/org/science/article/pii/S1525779725002752","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Three-dimensional printing of hydrogels enables the fabrication of complex structures for tissue engineering. Postprinting shrinking via electrostatic interactions offers a promising strategy to better replicate the size and intricacy of native tissues. This study explores hyaluronic acid (HA)-based hydrogels that undergo shrinking upon polycation penetration and complexation focusing on the influence of the HA macromer concentration, molecular weight, cross-linking density, hydrogel initial volume, and polycation properties on shrinking efficiency. To support cell adhesion, RGD peptides were incorporated into the HA network. The polycation concentration strongly affected cell viability: a high concentration of 1 wt % resulted in reduced viability, while 0.1 wt % preserved it with effective shrinkage. Volumetrically printed structures were reduced up to 9 times in volume, achieving features as small as 42 ± 6 μm. This shrinking approach enables the fabrication of hydrogel structures with significantly reduced dimensions, making it a powerful tool for developing high-precision hydrogel structures for tissue engineering.
期刊介绍:
Biomacromolecules is a leading forum for the dissemination of cutting-edge research at the interface of polymer science and biology. Submissions to Biomacromolecules should contain strong elements of innovation in terms of macromolecular design, synthesis and characterization, or in the application of polymer materials to biology and medicine.
Topics covered by Biomacromolecules include, but are not exclusively limited to: sustainable polymers, polymers based on natural and renewable resources, degradable polymers, polymer conjugates, polymeric drugs, polymers in biocatalysis, biomacromolecular assembly, biomimetic polymers, polymer-biomineral hybrids, biomimetic-polymer processing, polymer recycling, bioactive polymer surfaces, original polymer design for biomedical applications such as immunotherapy, drug delivery, gene delivery, antimicrobial applications, diagnostic imaging and biosensing, polymers in tissue engineering and regenerative medicine, polymeric scaffolds and hydrogels for cell culture and delivery.