Characterization of the Postaglycone Modifications in Ristomycin Biosynthesis.

IF 3.5 2区 生物学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY
Zhanzhao Cui, Xiaozheng Wang, Lixin Yin, Lu Chen, Kai Liu, Yemin Wang, Shuangjun Lin, Zixin Deng, Min Xu, Meifeng Tao
{"title":"Characterization of the Postaglycone Modifications in Ristomycin Biosynthesis.","authors":"Zhanzhao Cui, Xiaozheng Wang, Lixin Yin, Lu Chen, Kai Liu, Yemin Wang, Shuangjun Lin, Zixin Deng, Min Xu, Meifeng Tao","doi":"10.1021/acschembio.5c00280","DOIUrl":null,"url":null,"abstract":"<p><p><i>Amycolatopsis</i> sp. TNS106 produces ristomycin (ristocetin), a type III glycopeptide antibiotic (GPA) featuring extensive glycosyl modifications and potent antimicrobial activity against Gram-positive pathogens. Unlike the well-documented nonribosomal peptide synthetase-assembled peptide scaffold, the timing and specificity of its postassembly tailoring steps remain poorly understood. In this study, we generated a series of <i>A.</i> sp. TNS106 mutants and characterized accumulated derivatives to delineate the postaglycone tailoring steps for ristomycin maturation. <i>In vitro</i> biochemical reactions confirmed the function and timing of the RgtfB and RgtfC glycosyltransferases and MtfA carboxyl methyltransferase. By integrating our findings with prior studies, we propose a comprehensive model for the sequential glycosylation and C-terminal methylation processes governing ristomycin biosynthesis. Notably, we identified multiple ristomycin glycoforms that demonstrate improved antimicrobial activity compared to the parent molecule. Strikingly, removal of the ristosamine on β-hydroxytyrosine 6 (βht6) or the presence of rhamnose on 4-hydroxyphenylglycine 4 (Hpg4) markedly impaired its antibacterial activity, particularly against vancomycin-resistant <i>Enterococcus</i>. The engineered strains constructed here provide a versatile platform for generating novel ristomycin analogs through combinatorial biosynthesis or chemical synthesis, advancing the development of new-to-nature GPAs with improved potency.</p>","PeriodicalId":11,"journal":{"name":"ACS Chemical Biology","volume":" ","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2025-06-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Chemical Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1021/acschembio.5c00280","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Amycolatopsis sp. TNS106 produces ristomycin (ristocetin), a type III glycopeptide antibiotic (GPA) featuring extensive glycosyl modifications and potent antimicrobial activity against Gram-positive pathogens. Unlike the well-documented nonribosomal peptide synthetase-assembled peptide scaffold, the timing and specificity of its postassembly tailoring steps remain poorly understood. In this study, we generated a series of A. sp. TNS106 mutants and characterized accumulated derivatives to delineate the postaglycone tailoring steps for ristomycin maturation. In vitro biochemical reactions confirmed the function and timing of the RgtfB and RgtfC glycosyltransferases and MtfA carboxyl methyltransferase. By integrating our findings with prior studies, we propose a comprehensive model for the sequential glycosylation and C-terminal methylation processes governing ristomycin biosynthesis. Notably, we identified multiple ristomycin glycoforms that demonstrate improved antimicrobial activity compared to the parent molecule. Strikingly, removal of the ristosamine on β-hydroxytyrosine 6 (βht6) or the presence of rhamnose on 4-hydroxyphenylglycine 4 (Hpg4) markedly impaired its antibacterial activity, particularly against vancomycin-resistant Enterococcus. The engineered strains constructed here provide a versatile platform for generating novel ristomycin analogs through combinatorial biosynthesis or chemical synthesis, advancing the development of new-to-nature GPAs with improved potency.

利斯托霉素生物合成中后苷元修饰的表征。
Amycolatopsis sp. TNS106产生ristomycin (ristocetin),这是一种III型糖肽抗生素(GPA),具有广泛的糖基修饰和对革兰氏阳性病原体的有效抗菌活性。与文献充分记载的非核糖体肽合成酶组装肽支架不同,其组装后剪裁步骤的时间和特异性仍然知之甚少。在这项研究中,我们生成了一系列的a . sp. TNS106突变体,并对积累的衍生物进行了表征,以描绘利斯托霉素成熟的后苷元剪裁步骤。体外生化反应证实了RgtfB和RgtfC糖基转移酶和MtfA羧甲基转移酶的功能和时间。通过将我们的发现与先前的研究相结合,我们提出了一个控制利斯托霉素生物合成的顺序糖基化和c端甲基化过程的综合模型。值得注意的是,我们鉴定出与母体分子相比,多个利斯托霉素糖型表现出更好的抗菌活性。引人注目的是,去除β-羟基酪氨酸6 (βht6)上的李斯特胺或4-羟基苯基甘氨酸4 (Hpg4)上鼠李糖的存在显著损害了其抗菌活性,特别是对万古霉素耐药肠球菌。本文构建的工程菌株为通过组合生物合成或化学合成生成新型雷氏霉素类似物提供了一个通用的平台,促进了新型效力更高的天然gpa的开发。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Chemical Biology
ACS Chemical Biology 生物-生化与分子生物学
CiteScore
7.50
自引率
5.00%
发文量
353
审稿时长
3.3 months
期刊介绍: ACS Chemical Biology provides an international forum for the rapid communication of research that broadly embraces the interface between chemistry and biology. The journal also serves as a forum to facilitate the communication between biologists and chemists that will translate into new research opportunities and discoveries. Results will be published in which molecular reasoning has been used to probe questions through in vitro investigations, cell biological methods, or organismic studies. We welcome mechanistic studies on proteins, nucleic acids, sugars, lipids, and nonbiological polymers. The journal serves a large scientific community, exploring cellular function from both chemical and biological perspectives. It is understood that submitted work is based upon original results and has not been published previously.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信