First Simultaneous Multi-Point Observation of the Local-Time Asymmetry of keV Ions in the Dayside Magnetosphere During the Main Phase of the Geomagnetic Storm

IF 2.6 2区 地球科学 Q2 ASTRONOMY & ASTROPHYSICS
Megha Pandya, Yusuke Ebihara, Denny M. Oliveira, Marilia Samara, Mei-Ching Fok, Ankush Bhaskar, Cristian P. Ferradas, Takashi Tanaka, Robert Michell, Geoffrey Reeves, Jerry W. Manweiler
{"title":"First Simultaneous Multi-Point Observation of the Local-Time Asymmetry of keV Ions in the Dayside Magnetosphere During the Main Phase of the Geomagnetic Storm","authors":"Megha Pandya,&nbsp;Yusuke Ebihara,&nbsp;Denny M. Oliveira,&nbsp;Marilia Samara,&nbsp;Mei-Ching Fok,&nbsp;Ankush Bhaskar,&nbsp;Cristian P. Ferradas,&nbsp;Takashi Tanaka,&nbsp;Robert Michell,&nbsp;Geoffrey Reeves,&nbsp;Jerry W. Manweiler","doi":"10.1029/2025JA033793","DOIUrl":null,"url":null,"abstract":"<p>Our study presents the first simultaneous multi-point observation of the local-time asymmetry of 10's–100's of keV energy ion fluxes during the main phase of the geomagnetic storm that occurred on 7 September 2017. During this event, Van Allen Probe-A and Van Allen Probe-B observed two different tendencies. The ion fluxes increased by an order of magnitude in the noon-dusk sector, while decreasing by one order or more in the dawn-noon sector, offering a unique opportunity to investigate this asymmetry. Numerical simulations employing the Comprehensive Inner Magnetosphere-Ionosphere model with time-dependent electric fields from Global Magnetohydrodynamic (MHD) simulations revealed that the local time asymmetry in ion fluxes is associated with a sharp southward turning of the interplanetary magnetic field (IMF) and long-duration persistent westward electric field. These factors cause ions to drift toward the dusk sector, while preexisting ions on the dayside drift sunward and escape the inner magnetosphere. Our findings provide the first direct observational evidence of ring current asymmetry, complementing and supporting prior statistical studies and simulation results.</p>","PeriodicalId":15894,"journal":{"name":"Journal of Geophysical Research: Space Physics","volume":"130 6","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2025-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Geophysical Research: Space Physics","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1029/2025JA033793","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

Our study presents the first simultaneous multi-point observation of the local-time asymmetry of 10's–100's of keV energy ion fluxes during the main phase of the geomagnetic storm that occurred on 7 September 2017. During this event, Van Allen Probe-A and Van Allen Probe-B observed two different tendencies. The ion fluxes increased by an order of magnitude in the noon-dusk sector, while decreasing by one order or more in the dawn-noon sector, offering a unique opportunity to investigate this asymmetry. Numerical simulations employing the Comprehensive Inner Magnetosphere-Ionosphere model with time-dependent electric fields from Global Magnetohydrodynamic (MHD) simulations revealed that the local time asymmetry in ion fluxes is associated with a sharp southward turning of the interplanetary magnetic field (IMF) and long-duration persistent westward electric field. These factors cause ions to drift toward the dusk sector, while preexisting ions on the dayside drift sunward and escape the inner magnetosphere. Our findings provide the first direct observational evidence of ring current asymmetry, complementing and supporting prior statistical studies and simulation results.

地磁风暴主期日侧磁层keV离子局时不对称性的首次多点同步观测
我们的研究首次同时多点观测了2017年9月7日发生的地磁风暴主阶段10 s - 100 s的keV能量离子通量的局地时不对称性。在这一事件中,范艾伦探测器a和范艾伦探测器b观察到两种不同的趋势。离子通量在中午-黄昏扇区增加了一个数量级,而在黎明-正午扇区减少了一个数量级或更多,为研究这种不对称性提供了一个独特的机会。利用全球磁流体动力学(MHD)模拟的综合内磁层-电离层模型和时变电场的数值模拟表明,离子通量的局地时间不对称性与行星际磁场(IMF)的急剧南转和长时间持续的西向电场有关。这些因素导致离子向黄昏区域漂移,而先前存在于白天区域的离子则向太阳漂移并逃离内部磁层。我们的发现提供了环电流不对称的第一个直接观测证据,补充和支持了先前的统计研究和模拟结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Geophysical Research: Space Physics
Journal of Geophysical Research: Space Physics Earth and Planetary Sciences-Geophysics
CiteScore
5.30
自引率
35.70%
发文量
570
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信