{"title":"Short Rotation Forestry Expansion Drives Carbon Sequestration in Biomass but Not in Soil","authors":"Getachew Gemtesa Tiruneh, Asmamaw Alemu, Jennie Barron, Fantaw Yimer, Erik Karltun","doi":"10.1111/gcbb.70054","DOIUrl":null,"url":null,"abstract":"<p>A significant land use change from cropland to short rotation forestry (SRF) has taken place in the northwestern (NW) Ethiopian highlands where a fast-growing tree species, <i>Acacia mearnsii</i>, is cultivated to produce charcoal for urban markets. We investigated the extent of this land use change, its impact on the landscape carbon (C) budget, and its implications for climate change mitigation by combining field studies with remote sensing. We analyzed land use and land cover changes between 2005 and 2022 using Google Earth Pro imagery and validated the result with ground truthing through field observations. We estimated C stocks using soil and biomass samples collected from <i>A. mearnsii</i> plantation fields managed by smallholder farmers across three rotations and stand ages, as well as from cropland and other major land use types. Between 2005 and 2022, 60% of the cropland in the studied district was converted to <i>A. mearnsii</i> plantations. Our analysis showed that <i>A. mearnsii</i> cultivation had the highest spatial cover in 2017. However, a disease outbreak in 2020 resulted in a 40% reduction in cultivated area by 2022 compared to 2017 levels. The expansion of <i>A. mearnsii</i> cultivation increased total landscape C stocks by 21%, equivalent to a net sequestration of 0.3 Mt CO<sub>2</sub> year<sup>−1</sup> in the study district. This corresponded to 2.3% of Ethiopia's total annual fossil fuel emissions in 2021. The observed gain was due to C accumulation in standing biomass. In contrast, soil C stock showed a declining trend with successive rotations, though this change was not statistically significant. The main contribution of <i>A. mearnsii</i> based SRF in NW Ethiopia to the C budget is its potential to reduce dependence on natural forest for charcoal and firewood production.</p>","PeriodicalId":55126,"journal":{"name":"Global Change Biology Bioenergy","volume":"17 7","pages":""},"PeriodicalIF":4.1000,"publicationDate":"2025-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/gcbb.70054","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Global Change Biology Bioenergy","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/gcbb.70054","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRONOMY","Score":null,"Total":0}
引用次数: 0
Abstract
A significant land use change from cropland to short rotation forestry (SRF) has taken place in the northwestern (NW) Ethiopian highlands where a fast-growing tree species, Acacia mearnsii, is cultivated to produce charcoal for urban markets. We investigated the extent of this land use change, its impact on the landscape carbon (C) budget, and its implications for climate change mitigation by combining field studies with remote sensing. We analyzed land use and land cover changes between 2005 and 2022 using Google Earth Pro imagery and validated the result with ground truthing through field observations. We estimated C stocks using soil and biomass samples collected from A. mearnsii plantation fields managed by smallholder farmers across three rotations and stand ages, as well as from cropland and other major land use types. Between 2005 and 2022, 60% of the cropland in the studied district was converted to A. mearnsii plantations. Our analysis showed that A. mearnsii cultivation had the highest spatial cover in 2017. However, a disease outbreak in 2020 resulted in a 40% reduction in cultivated area by 2022 compared to 2017 levels. The expansion of A. mearnsii cultivation increased total landscape C stocks by 21%, equivalent to a net sequestration of 0.3 Mt CO2 year−1 in the study district. This corresponded to 2.3% of Ethiopia's total annual fossil fuel emissions in 2021. The observed gain was due to C accumulation in standing biomass. In contrast, soil C stock showed a declining trend with successive rotations, though this change was not statistically significant. The main contribution of A. mearnsii based SRF in NW Ethiopia to the C budget is its potential to reduce dependence on natural forest for charcoal and firewood production.
期刊介绍:
GCB Bioenergy is an international journal publishing original research papers, review articles and commentaries that promote understanding of the interface between biological and environmental sciences and the production of fuels directly from plants, algae and waste. The scope of the journal extends to areas outside of biology to policy forum, socioeconomic analyses, technoeconomic analyses and systems analysis. Papers do not need a global change component for consideration for publication, it is viewed as implicit that most bioenergy will be beneficial in avoiding at least a part of the fossil fuel energy that would otherwise be used.
Key areas covered by the journal:
Bioenergy feedstock and bio-oil production: energy crops and algae their management,, genomics, genetic improvements, planting, harvesting, storage, transportation, integrated logistics, production modeling, composition and its modification, pests, diseases and weeds of feedstocks. Manuscripts concerning alternative energy based on biological mimicry are also encouraged (e.g. artificial photosynthesis).
Biological Residues/Co-products: from agricultural production, forestry and plantations (stover, sugar, bio-plastics, etc.), algae processing industries, and municipal sources (MSW).
Bioenergy and the Environment: ecosystem services, carbon mitigation, land use change, life cycle assessment, energy and greenhouse gas balances, water use, water quality, assessment of sustainability, and biodiversity issues.
Bioenergy Socioeconomics: examining the economic viability or social acceptability of crops, crops systems and their processing, including genetically modified organisms [GMOs], health impacts of bioenergy systems.
Bioenergy Policy: legislative developments affecting biofuels and bioenergy.
Bioenergy Systems Analysis: examining biological developments in a whole systems context.