Neighboring Carbon Defects Enhanced Molecular Oxygen Activation of Cobalt Single Atom Catalysts Toward Efficient Aerobic Alcohols Oxidation

Xiaoli Luo, Weiqin Wei, Yingzhuang Xu, Di Liu, Zhen Wei, Junxiao Liu, Zhipeng Li, Liang Wang, Shuxin Ouyang, Hong Yuan, Zhen Liu, Tierui Zhang
{"title":"Neighboring Carbon Defects Enhanced Molecular Oxygen Activation of Cobalt Single Atom Catalysts Toward Efficient Aerobic Alcohols Oxidation","authors":"Xiaoli Luo,&nbsp;Weiqin Wei,&nbsp;Yingzhuang Xu,&nbsp;Di Liu,&nbsp;Zhen Wei,&nbsp;Junxiao Liu,&nbsp;Zhipeng Li,&nbsp;Liang Wang,&nbsp;Shuxin Ouyang,&nbsp;Hong Yuan,&nbsp;Zhen Liu,&nbsp;Tierui Zhang","doi":"10.1002/ange.202502430","DOIUrl":null,"url":null,"abstract":"<p>The effective adsorption and activation of molecular oxygen (O<sub>2</sub>) is crucial for aerobic alcohol oxidation; however, flexibly modulating the electronic structure of catalysts to improve the capability remains challenging. Herein, the concentration of carbon defects surrounding the nitrogen-coordinated cobalt (Co) single atoms on candle soot is controlled just through adjusting the amount of polyethyleneimine which chemically decorates the surface of candle soot to anchor Co ions. The concentration increase of carbon defects boosts the aerobic alcohol oxidation over the Co single-atom catalyst as well as ruthenium single-atom catalyst. Moreover, a series of alcohols, including those with sensitive groups, reach an outstanding yield. Significantly, the calculations and experiments verify that the carbon defects lead to the rearrangement of d-orbitals of Co atom and an elevation in the spin states of d<sub>yz</sub> and <span></span><math></math> orbitals. Furthermore, compared with low-spin Co atom, the stronger electron-transfer interaction between high-spin Co atom and O<sub>2</sub> enhances the adsorption and activation of O<sub>2</sub> and the generation of more superoxide radicals to promote alcohol oxidation. Our findings provide a new way for developing advanced single-atom catalysts for sustainable aerobic alcohol oxidation via manipulating the spin configurations of single atoms.</p>","PeriodicalId":7803,"journal":{"name":"Angewandte Chemie","volume":"137 25","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Angewandte Chemie","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/ange.202502430","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The effective adsorption and activation of molecular oxygen (O2) is crucial for aerobic alcohol oxidation; however, flexibly modulating the electronic structure of catalysts to improve the capability remains challenging. Herein, the concentration of carbon defects surrounding the nitrogen-coordinated cobalt (Co) single atoms on candle soot is controlled just through adjusting the amount of polyethyleneimine which chemically decorates the surface of candle soot to anchor Co ions. The concentration increase of carbon defects boosts the aerobic alcohol oxidation over the Co single-atom catalyst as well as ruthenium single-atom catalyst. Moreover, a series of alcohols, including those with sensitive groups, reach an outstanding yield. Significantly, the calculations and experiments verify that the carbon defects lead to the rearrangement of d-orbitals of Co atom and an elevation in the spin states of dyz and orbitals. Furthermore, compared with low-spin Co atom, the stronger electron-transfer interaction between high-spin Co atom and O2 enhances the adsorption and activation of O2 and the generation of more superoxide radicals to promote alcohol oxidation. Our findings provide a new way for developing advanced single-atom catalysts for sustainable aerobic alcohol oxidation via manipulating the spin configurations of single atoms.

邻碳缺陷增强钴单原子催化剂的分子氧活化以高效氧化好氧醇
分子氧(O2)的有效吸附和活化是有氧酒精氧化的关键;然而,灵活调节催化剂的电子结构以提高其性能仍然是一个挑战。本文通过调节聚亚胺的用量来控制蜡烛烟灰上氮配位钴(Co)单原子周围碳缺陷的浓度,聚亚胺在蜡烛烟灰表面进行化学修饰以锚定Co离子。碳缺陷浓度的增加促进了Co单原子催化剂和钌单原子催化剂的好氧醇氧化。此外,一系列醇类,包括那些具有敏感基团的醇类,可获得优异的产率。重要的是,计算和实验验证了碳缺陷导致Co原子的d轨道重排,dyz轨道和轨道的自旋态升高。此外,与低自旋Co原子相比,高自旋Co原子与O2之间更强的电子转移相互作用增强了O2的吸附和活化,产生了更多的超氧自由基,促进了醇的氧化。我们的发现为开发先进的单原子催化剂提供了一条新的途径,通过控制单原子的自旋构型来实现可持续的有氧醇氧化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Angewandte Chemie
Angewandte Chemie 化学科学, 有机化学, 有机合成
自引率
0.00%
发文量
0
审稿时长
1 months
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信