Tendon-Tissue Derived Monofilaments by Electrochemical Compaction: Production and Characterization

IF 3.9 3区 医学 Q2 ENGINEERING, BIOMEDICAL
Phillip McClellan, Joohee Choi, Mikhail Nasrallah, Kathleen Lundberg, Ozan Akkus
{"title":"Tendon-Tissue Derived Monofilaments by Electrochemical Compaction: Production and Characterization","authors":"Phillip McClellan,&nbsp;Joohee Choi,&nbsp;Mikhail Nasrallah,&nbsp;Kathleen Lundberg,&nbsp;Ozan Akkus","doi":"10.1002/jbm.a.37948","DOIUrl":null,"url":null,"abstract":"<p>Repair of tendon tissues remains a complex problem in orthopedic surgery. Tendon auto- and allografts are not utilized to the full extent of their capabilities due largely to the lack of porosity and availability of properly processed tendon stock. Cryomilling is often utilized to maximize surface area-to-volume while limiting alterations to native protein/gene structure. In this study, native tendons were isolated, cryomilled, and decellularized using a truncated protocol. The resulting decellularized tendon powder exhibited reduced DNA content of less than 15 ng/mg, indicating effective removal of cellular components. The resulting decellularized tendon “powder” was then subjected to mild acidic conditions to partially solubilize the collagen within the extracellular matrix to produce a solution that could be electrochemically compacted to generate aligned fibers. Proteomic analyses revealed the presence of tendon-related proteins (cartilage oligomeric protein, fibromodulin, lumican, biglycan, and tenascin c). Proteoglycans were present in tendon-derived thread (TDT) and largely absent in pure collagen threads, as visualized by safranin O and quantified by dimethylmethylene blue staining. Mesenchymal stem cells seeded and cultured for up to 14 days on collagen threads and TDTs exhibited similar expression of genes related to tendon tissue.</p>","PeriodicalId":15142,"journal":{"name":"Journal of biomedical materials research. Part A","volume":"113 6","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2025-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/jbm.a.37948","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of biomedical materials research. Part A","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jbm.a.37948","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Repair of tendon tissues remains a complex problem in orthopedic surgery. Tendon auto- and allografts are not utilized to the full extent of their capabilities due largely to the lack of porosity and availability of properly processed tendon stock. Cryomilling is often utilized to maximize surface area-to-volume while limiting alterations to native protein/gene structure. In this study, native tendons were isolated, cryomilled, and decellularized using a truncated protocol. The resulting decellularized tendon powder exhibited reduced DNA content of less than 15 ng/mg, indicating effective removal of cellular components. The resulting decellularized tendon “powder” was then subjected to mild acidic conditions to partially solubilize the collagen within the extracellular matrix to produce a solution that could be electrochemically compacted to generate aligned fibers. Proteomic analyses revealed the presence of tendon-related proteins (cartilage oligomeric protein, fibromodulin, lumican, biglycan, and tenascin c). Proteoglycans were present in tendon-derived thread (TDT) and largely absent in pure collagen threads, as visualized by safranin O and quantified by dimethylmethylene blue staining. Mesenchymal stem cells seeded and cultured for up to 14 days on collagen threads and TDTs exhibited similar expression of genes related to tendon tissue.

电化学压实肌腱组织衍生单丝:生产和表征
肌腱组织的修复一直是骨科手术中的一个复杂问题。自体肌腱和同种异体肌腱移植不能充分发挥其功能,主要原因是缺乏孔隙度和适当处理的肌腱库存。低温研磨通常用于最大化表面积与体积,同时限制对天然蛋白质/基因结构的改变。在这项研究中,天然肌腱被分离,低温碾磨,并使用截断协议去细胞。得到的脱细胞肌腱粉显示DNA含量低于15 ng/mg,表明有效去除细胞成分。然后将脱细胞肌腱“粉末”置于温和的酸性条件下,使细胞外基质中的胶原蛋白部分溶解,从而产生一种溶液,这种溶液可以通过电化学压实来生成排列的纤维。蛋白质组学分析显示存在肌腱相关蛋白(软骨寡聚蛋白、纤维调节蛋白、lumican、biglycan和tenascin c)。蛋白聚糖存在于肌腱源性丝线(TDT)中,而在纯胶原丝线中基本不存在,这是通过红素O可视化和二甲基亚甲基蓝染色定量的结果。间充质干细胞在胶原线和tdt上播种和培养长达14天,显示出与肌腱组织相关的基因表达相似。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of biomedical materials research. Part A
Journal of biomedical materials research. Part A 工程技术-材料科学:生物材料
CiteScore
10.40
自引率
2.00%
发文量
135
审稿时长
3.6 months
期刊介绍: The Journal of Biomedical Materials Research Part A is an international, interdisciplinary, English-language publication of original contributions concerning studies of the preparation, performance, and evaluation of biomaterials; the chemical, physical, toxicological, and mechanical behavior of materials in physiological environments; and the response of blood and tissues to biomaterials. The Journal publishes peer-reviewed articles on all relevant biomaterial topics including the science and technology of alloys,polymers, ceramics, and reprocessed animal and human tissues in surgery,dentistry, artificial organs, and other medical devices. The Journal also publishes articles in interdisciplinary areas such as tissue engineering and controlled release technology where biomaterials play a significant role in the performance of the medical device. The Journal of Biomedical Materials Research is the official journal of the Society for Biomaterials (USA), the Japanese Society for Biomaterials, the Australasian Society for Biomaterials, and the Korean Society for Biomaterials. Articles are welcomed from all scientists. Membership in the Society for Biomaterials is not a prerequisite for submission.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信