Accurate Classification of Pathological Whole-Slide Images for Out-of-Distribution Generalization

IF 5 2区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Kai Sun, Kai Huang, Jiaqi Huang, Maoxu Zhou, Gang Yu
{"title":"Accurate Classification of Pathological Whole-Slide Images for Out-of-Distribution Generalization","authors":"Kai Sun,&nbsp;Kai Huang,&nbsp;Jiaqi Huang,&nbsp;Maoxu Zhou,&nbsp;Gang Yu","doi":"10.1155/int/9988577","DOIUrl":null,"url":null,"abstract":"<div>\n <p>WSI-based classification often suffers from out-of-distribution (OOD) generalization due to the distribution mismatch between training on mixed patches from multiple WSIs and testing on individual WSIs with varying tissue compositions. This prior shift impairs model generalization and degrades performance. To address this issue, we propose two distribution alignment strategies: intra-WSI rearrange and inter-WSI rearrange, which, respectively, regulate patch distribution within individual WSIs and across different WSIs. These strategies are embedded into a transformer-based multi-instance learning (MIL) framework enabling more accurate and robust classification. Our method achieves excellent AUC scores of 0.959 and 0.963 on the CAMELYON16 and TCGA-NSCLC datasets, respectively. Moreover, it reaches an average AUC of 0.974 in 5-fold cross-validation on a private CRC dataset, matching the performance of patch-based approaches. Ablation studies further validate the effectiveness of our proposed strategies in mitigating the OOD challenge in WSI classification. Overall, these strategies enhance the robustness and accuracy of WSI-based models in handling OOD challenges.</p>\n </div>","PeriodicalId":14089,"journal":{"name":"International Journal of Intelligent Systems","volume":"2025 1","pages":""},"PeriodicalIF":5.0000,"publicationDate":"2025-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1155/int/9988577","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Intelligent Systems","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1155/int/9988577","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

WSI-based classification often suffers from out-of-distribution (OOD) generalization due to the distribution mismatch between training on mixed patches from multiple WSIs and testing on individual WSIs with varying tissue compositions. This prior shift impairs model generalization and degrades performance. To address this issue, we propose two distribution alignment strategies: intra-WSI rearrange and inter-WSI rearrange, which, respectively, regulate patch distribution within individual WSIs and across different WSIs. These strategies are embedded into a transformer-based multi-instance learning (MIL) framework enabling more accurate and robust classification. Our method achieves excellent AUC scores of 0.959 and 0.963 on the CAMELYON16 and TCGA-NSCLC datasets, respectively. Moreover, it reaches an average AUC of 0.974 in 5-fold cross-validation on a private CRC dataset, matching the performance of patch-based approaches. Ablation studies further validate the effectiveness of our proposed strategies in mitigating the OOD challenge in WSI classification. Overall, these strategies enhance the robustness and accuracy of WSI-based models in handling OOD challenges.

Abstract Image

病理整片图像的准确分类与分布外泛化
由于在多个wsi混合斑块上的训练与在不同组织组成的单个wsi上的测试之间的分布不匹配,基于wsi的分类经常受到分布外(OOD)泛化的影响。这种先验转移损害了模型的泛化并降低了性能。为了解决这一问题,我们提出了两种分布对齐策略:wsi内重新排列和wsi间重新排列,它们分别调节单个wsi内和不同wsi之间的补丁分布。这些策略被嵌入到基于转换器的多实例学习(MIL)框架中,从而实现更准确和健壮的分类。该方法在CAMELYON16和TCGA-NSCLC数据集上的AUC得分分别为0.959和0.963。此外,在私有CRC数据集上的5倍交叉验证中,该方法的平均AUC达到0.974,与基于补丁的方法的性能相当。消融研究进一步验证了我们提出的策略在缓解WSI分类中OOD挑战方面的有效性。总的来说,这些策略增强了基于wsi的模型在处理OOD挑战时的鲁棒性和准确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
International Journal of Intelligent Systems
International Journal of Intelligent Systems 工程技术-计算机:人工智能
CiteScore
11.30
自引率
14.30%
发文量
304
审稿时长
9 months
期刊介绍: The International Journal of Intelligent Systems serves as a forum for individuals interested in tapping into the vast theories based on intelligent systems construction. With its peer-reviewed format, the journal explores several fascinating editorials written by today''s experts in the field. Because new developments are being introduced each day, there''s much to be learned — examination, analysis creation, information retrieval, man–computer interactions, and more. The International Journal of Intelligent Systems uses charts and illustrations to demonstrate these ground-breaking issues, and encourages readers to share their thoughts and experiences.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信