{"title":"Improving the Robustness of the Projected Gradient Descent Method for Nonlinear Constrained Optimization Problems in Topology Optimization","authors":"Lucka Barbeau, Marc-Étienne Lamarche-Gagnon, Florin Ilinca","doi":"10.1002/nme.70068","DOIUrl":null,"url":null,"abstract":"<p>The Projected Gradient Descent (PGD) algorithm is a widely used and efficient first-order method for solving constrained optimization problems due to its simplicity and scalability in large design spaces. Building on recent advancements in the PGD algorithm, where an inertial step component has been introduced to improve efficiency in solving constrained optimization problems, this study introduces two key enhancements to further improve the algorithm's performance and adaptability in large-scale design spaces. First, univariate constraints (such as design variable bounds constraints) are directly incorporated into the projection step via the Schur complement and an improved active set algorithm with bulk constraints manipulation, avoiding issues with min–max clipping. Second, the update step is decomposed relative to the constraint vector space, enabling a post-projection adjustment based on the state of the constraints and an approximation of the Lagrangian, significantly improving the algorithm's robustness for problems with nonlinear constraints. Applied to a topology optimization problem for heat sink design, the proposed PGD algorithm demonstrates performance comparable to or exceeding that of the Method of Moving Asymptotes (MMA), with minimal parameter tuning. These results position the enhanced PGD as a robust tool for complex optimization problems with large variable spaces, such as topology optimization problems.</p>","PeriodicalId":13699,"journal":{"name":"International Journal for Numerical Methods in Engineering","volume":"126 12","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2025-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/nme.70068","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal for Numerical Methods in Engineering","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/nme.70068","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The Projected Gradient Descent (PGD) algorithm is a widely used and efficient first-order method for solving constrained optimization problems due to its simplicity and scalability in large design spaces. Building on recent advancements in the PGD algorithm, where an inertial step component has been introduced to improve efficiency in solving constrained optimization problems, this study introduces two key enhancements to further improve the algorithm's performance and adaptability in large-scale design spaces. First, univariate constraints (such as design variable bounds constraints) are directly incorporated into the projection step via the Schur complement and an improved active set algorithm with bulk constraints manipulation, avoiding issues with min–max clipping. Second, the update step is decomposed relative to the constraint vector space, enabling a post-projection adjustment based on the state of the constraints and an approximation of the Lagrangian, significantly improving the algorithm's robustness for problems with nonlinear constraints. Applied to a topology optimization problem for heat sink design, the proposed PGD algorithm demonstrates performance comparable to or exceeding that of the Method of Moving Asymptotes (MMA), with minimal parameter tuning. These results position the enhanced PGD as a robust tool for complex optimization problems with large variable spaces, such as topology optimization problems.
期刊介绍:
The International Journal for Numerical Methods in Engineering publishes original papers describing significant, novel developments in numerical methods that are applicable to engineering problems.
The Journal is known for welcoming contributions in a wide range of areas in computational engineering, including computational issues in model reduction, uncertainty quantification, verification and validation, inverse analysis and stochastic methods, optimisation, element technology, solution techniques and parallel computing, damage and fracture, mechanics at micro and nano-scales, low-speed fluid dynamics, fluid-structure interaction, electromagnetics, coupled diffusion phenomena, and error estimation and mesh generation. It is emphasized that this is by no means an exhaustive list, and particularly papers on multi-scale, multi-physics or multi-disciplinary problems, and on new, emerging topics are welcome.