{"title":"A Lightweight and Explainable Hybrid Deep Learning Model for Wearable Sensor-Based Human Activity Recognition","authors":"Pratibha Tokas;Vijay Bhaskar Semwal;Sweta Jain","doi":"10.1109/JSEN.2025.3564045","DOIUrl":null,"url":null,"abstract":"Human activity recognition (HAR) is critical for rehabilitation and clinical monitoring, but robust recognition using wearable sensors (e.g., sEMG or IMU) remains challenging due to signal noise and variability. We propose X-LiteHAR, a lightweight, explainable hybrid deep learning framework for real-time HAR, combining adaptive EEMD for noise-robust signal enhancement and a multihead CNN-LSTM for spatio-temporal feature learning. The optimized framework demonstrates efficient edge deployment through structured pruning and quantization, achieving 70% model size reduction while maintaining competitive performance, with on-device validation on an Android OnePlus 6T smartphone showing 9 ms inference latency. The model was trained and evaluated independently on two distinct datasets: 1) the UCI sEMG dataset (muscle activity signals) and 2) the IMU-only MHealth dataset (motion signals), demonstrating the architecture’s adaptability to different sensor modalities. On the UCI dataset, X-LiteHAR achieved 99.0% accuracy (healthy subjects) and 98.7% (pathological), while on MHealth (IMU-only), it reached 99.2% accuracy. Leveraging explainable AI (XAI), we interpret muscle activation patterns for personalized rehabilitation insights. By unifying signal processing, efficient deep learning, and interpretability, X-LiteHAR advances real-time HAR for clinical and wearable applications.","PeriodicalId":447,"journal":{"name":"IEEE Sensors Journal","volume":"25 12","pages":"22618-22628"},"PeriodicalIF":4.3000,"publicationDate":"2025-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Sensors Journal","FirstCategoryId":"103","ListUrlMain":"https://ieeexplore.ieee.org/document/10981518/","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
Human activity recognition (HAR) is critical for rehabilitation and clinical monitoring, but robust recognition using wearable sensors (e.g., sEMG or IMU) remains challenging due to signal noise and variability. We propose X-LiteHAR, a lightweight, explainable hybrid deep learning framework for real-time HAR, combining adaptive EEMD for noise-robust signal enhancement and a multihead CNN-LSTM for spatio-temporal feature learning. The optimized framework demonstrates efficient edge deployment through structured pruning and quantization, achieving 70% model size reduction while maintaining competitive performance, with on-device validation on an Android OnePlus 6T smartphone showing 9 ms inference latency. The model was trained and evaluated independently on two distinct datasets: 1) the UCI sEMG dataset (muscle activity signals) and 2) the IMU-only MHealth dataset (motion signals), demonstrating the architecture’s adaptability to different sensor modalities. On the UCI dataset, X-LiteHAR achieved 99.0% accuracy (healthy subjects) and 98.7% (pathological), while on MHealth (IMU-only), it reached 99.2% accuracy. Leveraging explainable AI (XAI), we interpret muscle activation patterns for personalized rehabilitation insights. By unifying signal processing, efficient deep learning, and interpretability, X-LiteHAR advances real-time HAR for clinical and wearable applications.
期刊介绍:
The fields of interest of the IEEE Sensors Journal are the theory, design , fabrication, manufacturing and applications of devices for sensing and transducing physical, chemical and biological phenomena, with emphasis on the electronics and physics aspect of sensors and integrated sensors-actuators. IEEE Sensors Journal deals with the following:
-Sensor Phenomenology, Modelling, and Evaluation
-Sensor Materials, Processing, and Fabrication
-Chemical and Gas Sensors
-Microfluidics and Biosensors
-Optical Sensors
-Physical Sensors: Temperature, Mechanical, Magnetic, and others
-Acoustic and Ultrasonic Sensors
-Sensor Packaging
-Sensor Networks
-Sensor Applications
-Sensor Systems: Signals, Processing, and Interfaces
-Actuators and Sensor Power Systems
-Sensor Signal Processing for high precision and stability (amplification, filtering, linearization, modulation/demodulation) and under harsh conditions (EMC, radiation, humidity, temperature); energy consumption/harvesting
-Sensor Data Processing (soft computing with sensor data, e.g., pattern recognition, machine learning, evolutionary computation; sensor data fusion, processing of wave e.g., electromagnetic and acoustic; and non-wave, e.g., chemical, gravity, particle, thermal, radiative and non-radiative sensor data, detection, estimation and classification based on sensor data)
-Sensors in Industrial Practice