{"title":"Improving Transformer Performance for French Clinical Notes Classification Using Mixture of Experts on a Limited Dataset","authors":"Thanh-Dung Le;Philippe Jouvet;Rita Noumeir","doi":"10.1109/JTEHM.2025.3576570","DOIUrl":null,"url":null,"abstract":"Transformer-based models have shown outstanding results in natural language processing but face challenges in applications like classifying small-scale clinical texts, especially with constrained computational resources. This study presents a customized Mixture of Expert (MoE) Transformer models for classifying small-scale French clinical texts at CHU Sainte-Justine Hospital. The MoE-Transformer addresses the dual challenges of effective training with limited data and low-resource computation suitable for in-house hospital use. Despite the success of biomedical pre-trained models such as CamemBERT-bio, DrBERT, and AliBERT, their high computational demands make them impractical for many clinical settings. Our MoE-Transformer model not only outperforms DistillBERT, CamemBERT, FlauBERT, and Transformer models on the same dataset but also achieves impressive results: an accuracy of 87%, precision of 87%, recall of 85%, and F1-score of 86%. While the MoE-Transformer does not surpass the performance of biomedical pre-trained BERT models, it can be trained at least 190 times faster, offering a viable alternative for settings with limited data and computational resources. Although the MoE-Transformer addresses challenges of generalization gaps and sharp minima, demonstrating some limitations for efficient and accurate clinical text classification, this model still represents a significant advancement in the field. It is particularly valuable for classifying small French clinical narratives within the privacy and constraints of hospital-based computational resources. Clinical and Translational Impact Statement—This study highlights the potential of customized MoE-Transformers in enhancing clinical text classification, particularly for small-scale datasets like French clinical narratives. The MoE-Transformer's ability to outperform several pre-trained BERT models marks a stride in applying NLP techniques to clinical data and integrating into a Clinical Decision Support System in a Pediatric Intensive Care Unit. The study underscores the importance of model selection and customization in achieving optimal performance for specific clinical applications, especially with limited data availability and within the constraints of hospital-based computational resources","PeriodicalId":54255,"journal":{"name":"IEEE Journal of Translational Engineering in Health and Medicine-Jtehm","volume":"13 ","pages":"261-274"},"PeriodicalIF":3.7000,"publicationDate":"2025-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=11023574","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Journal of Translational Engineering in Health and Medicine-Jtehm","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/11023574/","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Transformer-based models have shown outstanding results in natural language processing but face challenges in applications like classifying small-scale clinical texts, especially with constrained computational resources. This study presents a customized Mixture of Expert (MoE) Transformer models for classifying small-scale French clinical texts at CHU Sainte-Justine Hospital. The MoE-Transformer addresses the dual challenges of effective training with limited data and low-resource computation suitable for in-house hospital use. Despite the success of biomedical pre-trained models such as CamemBERT-bio, DrBERT, and AliBERT, their high computational demands make them impractical for many clinical settings. Our MoE-Transformer model not only outperforms DistillBERT, CamemBERT, FlauBERT, and Transformer models on the same dataset but also achieves impressive results: an accuracy of 87%, precision of 87%, recall of 85%, and F1-score of 86%. While the MoE-Transformer does not surpass the performance of biomedical pre-trained BERT models, it can be trained at least 190 times faster, offering a viable alternative for settings with limited data and computational resources. Although the MoE-Transformer addresses challenges of generalization gaps and sharp minima, demonstrating some limitations for efficient and accurate clinical text classification, this model still represents a significant advancement in the field. It is particularly valuable for classifying small French clinical narratives within the privacy and constraints of hospital-based computational resources. Clinical and Translational Impact Statement—This study highlights the potential of customized MoE-Transformers in enhancing clinical text classification, particularly for small-scale datasets like French clinical narratives. The MoE-Transformer's ability to outperform several pre-trained BERT models marks a stride in applying NLP techniques to clinical data and integrating into a Clinical Decision Support System in a Pediatric Intensive Care Unit. The study underscores the importance of model selection and customization in achieving optimal performance for specific clinical applications, especially with limited data availability and within the constraints of hospital-based computational resources
期刊介绍:
The IEEE Journal of Translational Engineering in Health and Medicine is an open access product that bridges the engineering and clinical worlds, focusing on detailed descriptions of advanced technical solutions to a clinical need along with clinical results and healthcare relevance. The journal provides a platform for state-of-the-art technology directions in the interdisciplinary field of biomedical engineering, embracing engineering, life sciences and medicine. A unique aspect of the journal is its ability to foster a collaboration between physicians and engineers for presenting broad and compelling real world technological and engineering solutions that can be implemented in the interest of improving quality of patient care and treatment outcomes, thereby reducing costs and improving efficiency. The journal provides an active forum for clinical research and relevant state-of the-art technology for members of all the IEEE societies that have an interest in biomedical engineering as well as reaching out directly to physicians and the medical community through the American Medical Association (AMA) and other clinical societies. The scope of the journal includes, but is not limited, to topics on: Medical devices, healthcare delivery systems, global healthcare initiatives, and ICT based services; Technological relevance to healthcare cost reduction; Technology affecting healthcare management, decision-making, and policy; Advanced technical work that is applied to solving specific clinical needs.