A D-Band InP Power Amplifier Featuring Fully AI-Generated Passive Networks

0 ENGINEERING, ELECTRICAL & ELECTRONIC
Song Hang Chai;Hyunsu Chae;Hao Yu;David Z. Pan;Sensen Li
{"title":"A D-Band InP Power Amplifier Featuring Fully AI-Generated Passive Networks","authors":"Song Hang Chai;Hyunsu Chae;Hao Yu;David Z. Pan;Sensen Li","doi":"10.1109/LMWT.2025.3566666","DOIUrl":null,"url":null,"abstract":"This work presents a high-efficiency D-band power amplifier (PA) implemented in 250-nm indium phosphide (InP) technology. A key innovation is the integration of artificial intelligence (AI) into the radio frequency power amplifier (RFPA) design flow for the automated generation of passive networks—a traditionally labor- and computation-intensive process. By utilizing a machine learning (ML) model as a surrogate for time-consuming electromagnetic (EM) solvers, this approach enables rapid exploration of a broader design space, improving productivity and uncovering potentially nonintuitive structures. The physics augmentation in the ML model mitigates its dependence on big training datasets, achieving an <italic>S</i>-parameter prediction error of less than 0.5 dB at the target frequency of 125 GHz. Using fully AI-generated passive networks, the PA delivers a saturated output power (<inline-formula> <tex-math>${P} _{\\text {sat}}$ </tex-math></inline-formula>) of 15.3 dBm and a peak power-added efficiency (PAE) of 26%. Additionally, it achieves a peak gain of 12.7 dB and a 3-dB bandwidth spanning 110–140 GHz and demonstrates its capability to support high-order quadrature amplitude modulation (QAM) signals at tens of Gb/s data rates.","PeriodicalId":73297,"journal":{"name":"IEEE microwave and wireless technology letters","volume":"35 6","pages":"824-827"},"PeriodicalIF":0.0000,"publicationDate":"2025-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE microwave and wireless technology letters","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/11015614/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"0","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

This work presents a high-efficiency D-band power amplifier (PA) implemented in 250-nm indium phosphide (InP) technology. A key innovation is the integration of artificial intelligence (AI) into the radio frequency power amplifier (RFPA) design flow for the automated generation of passive networks—a traditionally labor- and computation-intensive process. By utilizing a machine learning (ML) model as a surrogate for time-consuming electromagnetic (EM) solvers, this approach enables rapid exploration of a broader design space, improving productivity and uncovering potentially nonintuitive structures. The physics augmentation in the ML model mitigates its dependence on big training datasets, achieving an S-parameter prediction error of less than 0.5 dB at the target frequency of 125 GHz. Using fully AI-generated passive networks, the PA delivers a saturated output power ( ${P} _{\text {sat}}$ ) of 15.3 dBm and a peak power-added efficiency (PAE) of 26%. Additionally, it achieves a peak gain of 12.7 dB and a 3-dB bandwidth spanning 110–140 GHz and demonstrates its capability to support high-order quadrature amplitude modulation (QAM) signals at tens of Gb/s data rates.
一种全ai无源网络的d波段InP功率放大器
本文提出了一种采用250纳米磷化铟(InP)技术实现的高效d波段功率放大器(PA)。一个关键的创新是将人工智能(AI)集成到射频功率放大器(RFPA)设计流程中,用于自动生成无源网络,这是一个传统的劳动和计算密集型过程。通过利用机器学习(ML)模型代替耗时的电磁(EM)求解器,这种方法可以快速探索更广泛的设计空间,提高生产率并发现潜在的非直观结构。ML模型中的物理增强减轻了对大训练数据集的依赖,在125 GHz的目标频率下实现了小于0.5 dB的s参数预测误差。使用完全人工智能生成的无源网络,PA提供15.3 dBm的饱和输出功率(${P} _{\text {sat}}$)和26%的峰值功率附加效率(PAE)。此外,它实现了12.7 dB的峰值增益和跨越110-140 GHz的3 dB带宽,并证明了其支持数十Gb/s数据速率的高阶正交调幅(QAM)信号的能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
6.00
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信