Impact of By-Products From Metal Welding on the Temperature Measurement of MEMS-Based Thermoelectric Infrared Sensors

IF 4.3 2区 综合性期刊 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
Changwen Shi;Yu Gao;Haozhu Chen;Jiagen Cheng;Weihuang Yang;Chaoran Liu;Linxi Dong
{"title":"Impact of By-Products From Metal Welding on the Temperature Measurement of MEMS-Based Thermoelectric Infrared Sensors","authors":"Changwen Shi;Yu Gao;Haozhu Chen;Jiagen Cheng;Weihuang Yang;Chaoran Liu;Linxi Dong","doi":"10.1109/JSEN.2025.3564062","DOIUrl":null,"url":null,"abstract":"In metal welding processes, micro-electromechanical system (MEMS)-based thermoelectric infrared sensors are widely employed for real-time temperature monitoring to ensure weld quality. However, welding by-products, particularly fumes and molten metal spatter particles, introduce significant measurement errors in these sensors. This study investigates the mechanistic interaction between welding by-products and MEMS sensor performance, followed by systematic experimental analysis under varying operating conditions (object temperatures: <inline-formula> <tex-math>$30~^{\\circ }$ </tex-math></inline-formula>C–<inline-formula> <tex-math>$110~^{\\circ }$ </tex-math></inline-formula>C; measurement distances: 10–40 cm). A novel characterization method is proposed using binary classification of spatter-induced filter screen damage to quantify particle impact severity. Furthermore, a mathematical model is developed to correlate measurement error with temperature and distance variables, enabling real-time error compensation for by-product interference. Experimental validation demonstrates that the proposed compensation compensation algorithm reduces temperature measurement errors by up to 80.9% in high-spatter welding scenarios, demonstrating its practical utility in enhancing sensor reliability for industrial applications.","PeriodicalId":447,"journal":{"name":"IEEE Sensors Journal","volume":"25 12","pages":"22756-22764"},"PeriodicalIF":4.3000,"publicationDate":"2025-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Sensors Journal","FirstCategoryId":"103","ListUrlMain":"https://ieeexplore.ieee.org/document/10981472/","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

In metal welding processes, micro-electromechanical system (MEMS)-based thermoelectric infrared sensors are widely employed for real-time temperature monitoring to ensure weld quality. However, welding by-products, particularly fumes and molten metal spatter particles, introduce significant measurement errors in these sensors. This study investigates the mechanistic interaction between welding by-products and MEMS sensor performance, followed by systematic experimental analysis under varying operating conditions (object temperatures: $30~^{\circ }$ C– $110~^{\circ }$ C; measurement distances: 10–40 cm). A novel characterization method is proposed using binary classification of spatter-induced filter screen damage to quantify particle impact severity. Furthermore, a mathematical model is developed to correlate measurement error with temperature and distance variables, enabling real-time error compensation for by-product interference. Experimental validation demonstrates that the proposed compensation compensation algorithm reduces temperature measurement errors by up to 80.9% in high-spatter welding scenarios, demonstrating its practical utility in enhancing sensor reliability for industrial applications.
金属焊接副产物对mems热电红外传感器测温的影响
在金属焊接过程中,基于微机电系统(MEMS)的热电红外传感器被广泛用于实时温度监测,以保证焊接质量。然而,焊接副产品,特别是烟雾和熔融金属飞溅颗粒,在这些传感器中引入了显着的测量误差。本文研究了焊接副产物与MEMS传感器性能之间的相互作用机制,并在不同的工作条件下进行了系统的实验分析(物体温度:$30~^{\circ}$ C - $110~^{\circ}$ C;测量距离:10-40厘米)。提出了一种基于二值分类的飞溅滤网损伤表征方法。此外,建立了测量误差与温度和距离变量相关的数学模型,实现了对副产物干扰的实时误差补偿。实验验证表明,提出的补偿补偿算法在高飞溅焊接场景下可将温度测量误差降低80.9%,证明了其在工业应用中提高传感器可靠性的实用价值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
IEEE Sensors Journal
IEEE Sensors Journal 工程技术-工程:电子与电气
CiteScore
7.70
自引率
14.00%
发文量
2058
审稿时长
5.2 months
期刊介绍: The fields of interest of the IEEE Sensors Journal are the theory, design , fabrication, manufacturing and applications of devices for sensing and transducing physical, chemical and biological phenomena, with emphasis on the electronics and physics aspect of sensors and integrated sensors-actuators. IEEE Sensors Journal deals with the following: -Sensor Phenomenology, Modelling, and Evaluation -Sensor Materials, Processing, and Fabrication -Chemical and Gas Sensors -Microfluidics and Biosensors -Optical Sensors -Physical Sensors: Temperature, Mechanical, Magnetic, and others -Acoustic and Ultrasonic Sensors -Sensor Packaging -Sensor Networks -Sensor Applications -Sensor Systems: Signals, Processing, and Interfaces -Actuators and Sensor Power Systems -Sensor Signal Processing for high precision and stability (amplification, filtering, linearization, modulation/demodulation) and under harsh conditions (EMC, radiation, humidity, temperature); energy consumption/harvesting -Sensor Data Processing (soft computing with sensor data, e.g., pattern recognition, machine learning, evolutionary computation; sensor data fusion, processing of wave e.g., electromagnetic and acoustic; and non-wave, e.g., chemical, gravity, particle, thermal, radiative and non-radiative sensor data, detection, estimation and classification based on sensor data) -Sensors in Industrial Practice
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信