A Wireless, Scalable, and Modular EEG Sensor Network Platform for Unobtrusive Brain Recordings

IF 4.3 2区 综合性期刊 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
Ruochen Ding;Charles Hovine;Piet Callemeyn;Michael Kraft;Alexander Bertrand
{"title":"A Wireless, Scalable, and Modular EEG Sensor Network Platform for Unobtrusive Brain Recordings","authors":"Ruochen Ding;Charles Hovine;Piet Callemeyn;Michael Kraft;Alexander Bertrand","doi":"10.1109/JSEN.2025.3562791","DOIUrl":null,"url":null,"abstract":"This article introduces a modular sensing platform for wearable electroencephalography (EEG) recordings. The platform is conceived as a wireless EEG sensor network (WESN), consisting of multiple miniaturized, wireless EEG sensor nodes that synchronously collect EEG data from different scalp locations. As there are no wires between the different sensors, the platform provides maximal flexibility and discreetness, combined with a reduced sensitivity to motion artifacts or electromagnetic interference. By removing the driven right leg (DRL) electrode and reducing the within node electrode spacing to 3 cm, we obtain a compact design while maintaining a high signal integrity. The WESN system was validated through a series of experiments: achieving synchronization of EEG data transmission across multiple sensor nodes and the detection of actual neural responses in EEG experiments. These results demonstrate the effectiveness and robustness of the proposed WESN platform, establishing it as a promising research platform for scalable, flexible, and discreet multichannel EEG monitoring in ambulatory settings.","PeriodicalId":447,"journal":{"name":"IEEE Sensors Journal","volume":"25 12","pages":"22580-22590"},"PeriodicalIF":4.3000,"publicationDate":"2025-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Sensors Journal","FirstCategoryId":"103","ListUrlMain":"https://ieeexplore.ieee.org/document/10977753/","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

This article introduces a modular sensing platform for wearable electroencephalography (EEG) recordings. The platform is conceived as a wireless EEG sensor network (WESN), consisting of multiple miniaturized, wireless EEG sensor nodes that synchronously collect EEG data from different scalp locations. As there are no wires between the different sensors, the platform provides maximal flexibility and discreetness, combined with a reduced sensitivity to motion artifacts or electromagnetic interference. By removing the driven right leg (DRL) electrode and reducing the within node electrode spacing to 3 cm, we obtain a compact design while maintaining a high signal integrity. The WESN system was validated through a series of experiments: achieving synchronization of EEG data transmission across multiple sensor nodes and the detection of actual neural responses in EEG experiments. These results demonstrate the effectiveness and robustness of the proposed WESN platform, establishing it as a promising research platform for scalable, flexible, and discreet multichannel EEG monitoring in ambulatory settings.
一个无线的,可扩展的,模块化的脑电图传感器网络平台,用于不显眼的大脑记录
本文介绍了一种可穿戴式脑电图(EEG)记录模块传感平台。该平台被设想为一个无线脑电图传感器网络(wsn),由多个小型化的无线脑电图传感器节点组成,这些节点可以同步收集来自不同头皮位置的脑电图数据。由于不同传感器之间没有电线,该平台提供了最大的灵活性和谨慎性,同时降低了对运动伪影或电磁干扰的灵敏度。通过移除驱动右腿(DRL)电极并将节点内电极间距减小到3厘米,我们获得了紧凑的设计,同时保持了高信号完整性。通过一系列实验验证了该wsn系统,实现了多个传感器节点间脑电数据传输的同步,以及脑电实验中实际神经反应的检测。这些结果证明了所提出的小波神经网络平台的有效性和鲁棒性,使其成为一个有前途的研究平台,用于可扩展、灵活和离散的多通道动态EEG监测。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
IEEE Sensors Journal
IEEE Sensors Journal 工程技术-工程:电子与电气
CiteScore
7.70
自引率
14.00%
发文量
2058
审稿时长
5.2 months
期刊介绍: The fields of interest of the IEEE Sensors Journal are the theory, design , fabrication, manufacturing and applications of devices for sensing and transducing physical, chemical and biological phenomena, with emphasis on the electronics and physics aspect of sensors and integrated sensors-actuators. IEEE Sensors Journal deals with the following: -Sensor Phenomenology, Modelling, and Evaluation -Sensor Materials, Processing, and Fabrication -Chemical and Gas Sensors -Microfluidics and Biosensors -Optical Sensors -Physical Sensors: Temperature, Mechanical, Magnetic, and others -Acoustic and Ultrasonic Sensors -Sensor Packaging -Sensor Networks -Sensor Applications -Sensor Systems: Signals, Processing, and Interfaces -Actuators and Sensor Power Systems -Sensor Signal Processing for high precision and stability (amplification, filtering, linearization, modulation/demodulation) and under harsh conditions (EMC, radiation, humidity, temperature); energy consumption/harvesting -Sensor Data Processing (soft computing with sensor data, e.g., pattern recognition, machine learning, evolutionary computation; sensor data fusion, processing of wave e.g., electromagnetic and acoustic; and non-wave, e.g., chemical, gravity, particle, thermal, radiative and non-radiative sensor data, detection, estimation and classification based on sensor data) -Sensors in Industrial Practice
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信