{"title":"An Agile Additively Manufactured 5G/mm-Wave RF Front-End With Multilayer Conformality and Printed RF VIAs for Ultrawideband and Miniaturized Systems","authors":"Hani Al Jamal;Manos M. Tentzeris","doi":"10.1109/LMWT.2025.3558479","DOIUrl":null,"url":null,"abstract":"This article presents the first fully additively manufactured (AM) multilayered RF front-end (RF-FE) for mm-wave frequencies (20–30 GHz), integrating active devices, passive printed structures, and RF signals routed on both outer layers. The system features flexible inkjet- and screen-printed RF vertical interconnects (VIAs) with insertion loss between 0.58 and 1.64 dB and minimal bending-induced degradation. Its multilayer architecture enables significant miniaturization, ideal for compact, low-cost, and sustainable mm-wave modules in wearable devices, autonomous UAVs, and smart cities. The design achieves inkjet-printed feature sizes down to <inline-formula> <tex-math>$60\\,\\mu $ </tex-math></inline-formula>m, critical for mm-wave filters, and incorporates a monopole antenna array with up to 9-dBi gain, demonstrating robust planar and conformal performance. Leveraging AM, this work establishes a pathway for miniaturized, flexible, and cost-effective RF systems, addressing key challenges in advanced communication and sensing applications.","PeriodicalId":73297,"journal":{"name":"IEEE microwave and wireless technology letters","volume":"35 6","pages":"808-811"},"PeriodicalIF":3.4000,"publicationDate":"2025-04-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE microwave and wireless technology letters","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10978885/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"0","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
This article presents the first fully additively manufactured (AM) multilayered RF front-end (RF-FE) for mm-wave frequencies (20–30 GHz), integrating active devices, passive printed structures, and RF signals routed on both outer layers. The system features flexible inkjet- and screen-printed RF vertical interconnects (VIAs) with insertion loss between 0.58 and 1.64 dB and minimal bending-induced degradation. Its multilayer architecture enables significant miniaturization, ideal for compact, low-cost, and sustainable mm-wave modules in wearable devices, autonomous UAVs, and smart cities. The design achieves inkjet-printed feature sizes down to $60\,\mu $ m, critical for mm-wave filters, and incorporates a monopole antenna array with up to 9-dBi gain, demonstrating robust planar and conformal performance. Leveraging AM, this work establishes a pathway for miniaturized, flexible, and cost-effective RF systems, addressing key challenges in advanced communication and sensing applications.