Ultralow Dark Current and High-Speed GaN-Based Visible Blind UV Photodetector

IF 4.3 2区 综合性期刊 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
Balkrishna Choubey;Kankat Ghosh
{"title":"Ultralow Dark Current and High-Speed GaN-Based Visible Blind UV Photodetector","authors":"Balkrishna Choubey;Kankat Ghosh","doi":"10.1109/JSEN.2025.3562887","DOIUrl":null,"url":null,"abstract":"This article presents a critical analysis of the fabrication and characterization of a gallium nitride (GaN)based visible-blind metal–semiconductor–metal ultraviolet photodetector. The GaN epilayer exhibits an excellent crystalline quality, as evidenced by symmetric and asymmetric x-ray rocking curve (XRC) full-width at half-maximum (FWHM) values of <inline-formula> <tex-math>$\\sim 60$ </tex-math></inline-formula> and <inline-formula> <tex-math>$\\sim 223.2$ </tex-math></inline-formula> arcsec, respectively, along with an average threading dislocation density in the order of <inline-formula> <tex-math>$\\sim 10^7$ </tex-math></inline-formula> <inline-formula> <tex-math>$\\mathrm{cm}^{-2}$ </tex-math></inline-formula> as derived from XRC data. Atomic force microscopy analysis reveals a root mean square (rms) roughness of <inline-formula> <tex-math>$\\sim 424$ </tex-math></inline-formula> pm, further highlighting the smoothness of the epilayer. The high crystalline quality significantly reduces the leakage (dark) current, measured as <inline-formula> <tex-math>$3 \\times 10^{-12} \\mathrm{~A}$ </tex-math></inline-formula> at 15 V, one of the lowest as compared to the already reported devices. The photocurrent with 360 nm input illumination was obtained to be <inline-formula> <tex-math>$1.2 \\times 10^{-7} \\mathrm{~A}$ </tex-math></inline-formula> at 15 V, approximately four orders of magnitude higher than the dark current. The photodetector demonstrates exceptional performance metrics, including a detectivity of <inline-formula> <tex-math>$6 \\times 10^{12}$ </tex-math></inline-formula> Jones and a responsivity of <inline-formula> <tex-math>$0.522 \\mathrm{~A} / \\mathrm{W}$ </tex-math></inline-formula> at 15 V, surpassing many other recent reports. Also, it features an unmatched ultrafast temporal response with rise and fall times of <inline-formula> <tex-math>$\\sim 31$ </tex-math></inline-formula> and <inline-formula> <tex-math>$\\sim 27 \\mu \\mathrm{~s}$ </tex-math></inline-formula>, respectively, setting a benchmark for high-speed operation.","PeriodicalId":447,"journal":{"name":"IEEE Sensors Journal","volume":"25 12","pages":"21424-21431"},"PeriodicalIF":4.3000,"publicationDate":"2025-04-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Sensors Journal","FirstCategoryId":"103","ListUrlMain":"https://ieeexplore.ieee.org/document/10979239/","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

This article presents a critical analysis of the fabrication and characterization of a gallium nitride (GaN)based visible-blind metal–semiconductor–metal ultraviolet photodetector. The GaN epilayer exhibits an excellent crystalline quality, as evidenced by symmetric and asymmetric x-ray rocking curve (XRC) full-width at half-maximum (FWHM) values of $\sim 60$ and $\sim 223.2$ arcsec, respectively, along with an average threading dislocation density in the order of $\sim 10^7$ $\mathrm{cm}^{-2}$ as derived from XRC data. Atomic force microscopy analysis reveals a root mean square (rms) roughness of $\sim 424$ pm, further highlighting the smoothness of the epilayer. The high crystalline quality significantly reduces the leakage (dark) current, measured as $3 \times 10^{-12} \mathrm{~A}$ at 15 V, one of the lowest as compared to the already reported devices. The photocurrent with 360 nm input illumination was obtained to be $1.2 \times 10^{-7} \mathrm{~A}$ at 15 V, approximately four orders of magnitude higher than the dark current. The photodetector demonstrates exceptional performance metrics, including a detectivity of $6 \times 10^{12}$ Jones and a responsivity of $0.522 \mathrm{~A} / \mathrm{W}$ at 15 V, surpassing many other recent reports. Also, it features an unmatched ultrafast temporal response with rise and fall times of $\sim 31$ and $\sim 27 \mu \mathrm{~s}$ , respectively, setting a benchmark for high-speed operation.
超低暗电流和高速氮化镓基可见盲紫外探测器
本文介绍了氮化镓(GaN)基可见盲金属-半导体-金属紫外探测器的制造和表征的关键分析。对称和非对称x射线摇摆曲线(XRC)半最大全宽(FWHM)值分别为$\sim 60$和$\sim 223.2$ arcsec,以及XRC数据得出的平均螺纹位错密度为$\sim 10^7$$\mathrm{cm}^{-2}$数量级,证明了GaN涂层具有优异的晶体质量。原子力显微镜分析显示,均方根(rms)粗糙度为$\sim 424$ pm,进一步突出了脱毛层的光滑度。高晶体质量显著降低泄漏(暗)电流,测量为$3 \times 10^{-12} \mathrm{~A}$在15 V,与已经报道的器件相比,是最低的之一。在输入光照为360 nm时,光电流在15 V时为$1.2 \times 10^{-7} \mathrm{~A}$,比暗电流高约4个数量级。光电探测器表现出优异的性能指标,包括$6 \times 10^{12}$ Jones的探测率和$0.522 \mathrm{~A} / \mathrm{W}$的15 V响应率,超过了许多其他最近的报道。此外,它还具有无与伦比的超快时间响应,上升和下降时间分别为$\sim 31$和$\sim 27 \mu \mathrm{~s}$,为高速运行设定了基准。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
IEEE Sensors Journal
IEEE Sensors Journal 工程技术-工程:电子与电气
CiteScore
7.70
自引率
14.00%
发文量
2058
审稿时长
5.2 months
期刊介绍: The fields of interest of the IEEE Sensors Journal are the theory, design , fabrication, manufacturing and applications of devices for sensing and transducing physical, chemical and biological phenomena, with emphasis on the electronics and physics aspect of sensors and integrated sensors-actuators. IEEE Sensors Journal deals with the following: -Sensor Phenomenology, Modelling, and Evaluation -Sensor Materials, Processing, and Fabrication -Chemical and Gas Sensors -Microfluidics and Biosensors -Optical Sensors -Physical Sensors: Temperature, Mechanical, Magnetic, and others -Acoustic and Ultrasonic Sensors -Sensor Packaging -Sensor Networks -Sensor Applications -Sensor Systems: Signals, Processing, and Interfaces -Actuators and Sensor Power Systems -Sensor Signal Processing for high precision and stability (amplification, filtering, linearization, modulation/demodulation) and under harsh conditions (EMC, radiation, humidity, temperature); energy consumption/harvesting -Sensor Data Processing (soft computing with sensor data, e.g., pattern recognition, machine learning, evolutionary computation; sensor data fusion, processing of wave e.g., electromagnetic and acoustic; and non-wave, e.g., chemical, gravity, particle, thermal, radiative and non-radiative sensor data, detection, estimation and classification based on sensor data) -Sensors in Industrial Practice
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信