A Transfer Learning-Based CNN–Transformer Framework for Efficient Behavior Prediction of Microwave Passive Components

0 ENGINEERING, ELECTRICAL & ELECTRONIC
Cong Zhang;Fan Wu;Xiaoqiang Zhu;Huadong Ma;Yuanan Liu
{"title":"A Transfer Learning-Based CNN–Transformer Framework for Efficient Behavior Prediction of Microwave Passive Components","authors":"Cong Zhang;Fan Wu;Xiaoqiang Zhu;Huadong Ma;Yuanan Liu","doi":"10.1109/LMWT.2025.3551419","DOIUrl":null,"url":null,"abstract":"As the design of microwave components becomes increasingly complex, traditional full-wave electromagnetic (EM) simulations have become time-consuming and resource-intensive. This letter introduces an innovative approach for predicting the behavior of microwave components. The method categorizes design parameters into two main groups: structural parameters for basic geometric shapes and free-form control parameters for more intricate, irregular designs. A convolutional neural network (CNN) based on a transformer model is also developed, leveraging transfer learning to enhance prediction accuracy, efficiency, and generalization. Experimental results demonstrate high-precision predictions, offering a novel solution for the efficient design and optimization of microwave components.","PeriodicalId":73297,"journal":{"name":"IEEE microwave and wireless technology letters","volume":"35 6","pages":"630-633"},"PeriodicalIF":0.0000,"publicationDate":"2025-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE microwave and wireless technology letters","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10945420/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"0","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

As the design of microwave components becomes increasingly complex, traditional full-wave electromagnetic (EM) simulations have become time-consuming and resource-intensive. This letter introduces an innovative approach for predicting the behavior of microwave components. The method categorizes design parameters into two main groups: structural parameters for basic geometric shapes and free-form control parameters for more intricate, irregular designs. A convolutional neural network (CNN) based on a transformer model is also developed, leveraging transfer learning to enhance prediction accuracy, efficiency, and generalization. Experimental results demonstrate high-precision predictions, offering a novel solution for the efficient design and optimization of microwave components.
基于迁移学习的cnn -变压器框架用于微波无源元件的有效行为预测
随着微波器件设计的日益复杂,传统的全波电磁仿真变得耗时耗力。这封信介绍了一种预测微波元件行为的创新方法。该方法将设计参数分为两大类:基本几何形状的结构参数和更复杂、不规则设计的自由形式控制参数。基于变压器模型的卷积神经网络(CNN)也被开发出来,利用迁移学习来提高预测的准确性、效率和泛化。实验结果显示了高精度的预测结果,为微波元件的高效设计和优化提供了一种新的解决方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
6.00
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信