A Bayesian-Genetic Hybrid Method for Frequency Diverse Array Transmit Beampattern Optimization

IF 4.3 2区 综合性期刊 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
Ahmad Bilal;Yash H. Shah;Abdul Hadee;Sohom Bhattacharjee;Choon Sik Cho
{"title":"A Bayesian-Genetic Hybrid Method for Frequency Diverse Array Transmit Beampattern Optimization","authors":"Ahmad Bilal;Yash H. Shah;Abdul Hadee;Sohom Bhattacharjee;Choon Sik Cho","doi":"10.1109/JSEN.2025.3558475","DOIUrl":null,"url":null,"abstract":"This article proposes a new method to find the optimum frequency offsets (FOs) in a frequency diverse array (FDA) radar transmit beampattern that minimizes the peak sidelobe level (PSLL) and half power beamwidth (HPBW). This method uses a modified Bayesian optimization (BO) framework, where Bayesian neural network (BNN) is used for surrogate modeling of FDA radar transmit beampattern objective function. By resampling the weights and biases of BNN, we get a distribution of predictions, whose mean and standard deviation are used to compute the expected improvement (EI). A population of FOs where the EI is higher is used to initialize genetic algorithm (GA). Unlike the traditional method of random initialization, this method guides GA, which, in turn, searches and updates the BNN with function evaluations. Hence, each suboptimal GA run trains the BNN, and this cycle is repeated until convergence. Simulation results show that this method yields PSLL and HPBW that are lower than state of the art.","PeriodicalId":447,"journal":{"name":"IEEE Sensors Journal","volume":"25 12","pages":"21878-21887"},"PeriodicalIF":4.3000,"publicationDate":"2025-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Sensors Journal","FirstCategoryId":"103","ListUrlMain":"https://ieeexplore.ieee.org/document/10976377/","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

This article proposes a new method to find the optimum frequency offsets (FOs) in a frequency diverse array (FDA) radar transmit beampattern that minimizes the peak sidelobe level (PSLL) and half power beamwidth (HPBW). This method uses a modified Bayesian optimization (BO) framework, where Bayesian neural network (BNN) is used for surrogate modeling of FDA radar transmit beampattern objective function. By resampling the weights and biases of BNN, we get a distribution of predictions, whose mean and standard deviation are used to compute the expected improvement (EI). A population of FOs where the EI is higher is used to initialize genetic algorithm (GA). Unlike the traditional method of random initialization, this method guides GA, which, in turn, searches and updates the BNN with function evaluations. Hence, each suboptimal GA run trains the BNN, and this cycle is repeated until convergence. Simulation results show that this method yields PSLL and HPBW that are lower than state of the art.
分频阵列发射波束方向图优化的贝叶斯-遗传混合方法
本文提出了一种在分频阵列(FDA)雷达发射波束方向图中求得最优频率偏移(FOs)的新方法,使峰值旁瓣电平(PSLL)和半功率波束宽度(HPBW)最小。该方法采用改进的贝叶斯优化(BO)框架,利用贝叶斯神经网络(BNN)对FDA雷达发射波束图目标函数进行代理建模。通过对BNN的权重和偏差进行重采样,得到预测分布,其均值和标准差用于计算期望改进(EI)。在初始化遗传算法(GA)时,使用EI较高的fo群体。与传统的随机初始化方法不同,该方法引导遗传算法,遗传算法通过函数求值来搜索和更新BNN。因此,每次次优GA运行训练BNN,这个循环重复直到收敛。仿真结果表明,该方法能得到比现有方法更低的PSLL和HPBW。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
IEEE Sensors Journal
IEEE Sensors Journal 工程技术-工程:电子与电气
CiteScore
7.70
自引率
14.00%
发文量
2058
审稿时长
5.2 months
期刊介绍: The fields of interest of the IEEE Sensors Journal are the theory, design , fabrication, manufacturing and applications of devices for sensing and transducing physical, chemical and biological phenomena, with emphasis on the electronics and physics aspect of sensors and integrated sensors-actuators. IEEE Sensors Journal deals with the following: -Sensor Phenomenology, Modelling, and Evaluation -Sensor Materials, Processing, and Fabrication -Chemical and Gas Sensors -Microfluidics and Biosensors -Optical Sensors -Physical Sensors: Temperature, Mechanical, Magnetic, and others -Acoustic and Ultrasonic Sensors -Sensor Packaging -Sensor Networks -Sensor Applications -Sensor Systems: Signals, Processing, and Interfaces -Actuators and Sensor Power Systems -Sensor Signal Processing for high precision and stability (amplification, filtering, linearization, modulation/demodulation) and under harsh conditions (EMC, radiation, humidity, temperature); energy consumption/harvesting -Sensor Data Processing (soft computing with sensor data, e.g., pattern recognition, machine learning, evolutionary computation; sensor data fusion, processing of wave e.g., electromagnetic and acoustic; and non-wave, e.g., chemical, gravity, particle, thermal, radiative and non-radiative sensor data, detection, estimation and classification based on sensor data) -Sensors in Industrial Practice
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信