Upcycling cement kiln dust for manufacturing clay bricks fired at different temperatures: RSM and ANN-GA hybrid-optimization

IF 6 Q1 ENGINEERING, MULTIDISCIPLINARY
Rahma Mebarkia , Mansour Bouzeroura , Messaouda Boumaaza , Nasser Chelouah , Ahmed Belaadi , Ibrahim M.H. Alshaikh , Yazid Chetbani , Djamel Ghernaout
{"title":"Upcycling cement kiln dust for manufacturing clay bricks fired at different temperatures: RSM and ANN-GA hybrid-optimization","authors":"Rahma Mebarkia ,&nbsp;Mansour Bouzeroura ,&nbsp;Messaouda Boumaaza ,&nbsp;Nasser Chelouah ,&nbsp;Ahmed Belaadi ,&nbsp;Ibrahim M.H. Alshaikh ,&nbsp;Yazid Chetbani ,&nbsp;Djamel Ghernaout","doi":"10.1016/j.rineng.2025.105683","DOIUrl":null,"url":null,"abstract":"<div><div>The present research examines the utilization of cement kiln dust (CKD) in the manufacturing of low temperatures clay bricks (CB) adopting two types of clay, Remila (CR) and Ajiba (CA). The primary goal is to examine how the proportion of CKD and firing temperature interact to affect the bricks' mechanical and thermal characteristics. The effects of these substances on the regulated parameters were assessed using artificial neural network (ANN) techniques and response surface methodology (RSM) in a two-variable process that included curing temperature and CKD %. A factorial design was used for this objective, with CKD rates set at 0 %, 10 %, 20 %, and 25 % at temperatures ranging from 600 °C to 900 °C. The statistical research findings show that these parameters have a major impact on brick performance. According to the desirability function RSM, genetic algorithm ANN, and Multi-Criteria Decision-Making (MCDM) using the TOPSIS method optimization, the optimal circumstances were identified as 896.51 °C and 29.61 %, 870.24 °C and 29.79 %, 800 °C and 30% of temperature and CKD content, respectively. These findings allow for the determination of the best parameters to design bricks that optimally balance strength and thermal insulation, thereby optimizing production conditions through this experimental approach.</div></div>","PeriodicalId":36919,"journal":{"name":"Results in Engineering","volume":"27 ","pages":"Article 105683"},"PeriodicalIF":6.0000,"publicationDate":"2025-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Results in Engineering","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590123025017542","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The present research examines the utilization of cement kiln dust (CKD) in the manufacturing of low temperatures clay bricks (CB) adopting two types of clay, Remila (CR) and Ajiba (CA). The primary goal is to examine how the proportion of CKD and firing temperature interact to affect the bricks' mechanical and thermal characteristics. The effects of these substances on the regulated parameters were assessed using artificial neural network (ANN) techniques and response surface methodology (RSM) in a two-variable process that included curing temperature and CKD %. A factorial design was used for this objective, with CKD rates set at 0 %, 10 %, 20 %, and 25 % at temperatures ranging from 600 °C to 900 °C. The statistical research findings show that these parameters have a major impact on brick performance. According to the desirability function RSM, genetic algorithm ANN, and Multi-Criteria Decision-Making (MCDM) using the TOPSIS method optimization, the optimal circumstances were identified as 896.51 °C and 29.61 %, 870.24 °C and 29.79 %, 800 °C and 30% of temperature and CKD content, respectively. These findings allow for the determination of the best parameters to design bricks that optimally balance strength and thermal insulation, thereby optimizing production conditions through this experimental approach.
不同温度下生产粘土砖的水泥窑粉尘升级:RSM和ANN-GA混合优化
采用雷米拉(Remila)和阿吉巴(Ajiba)两种粘土,研究了水泥窑粉尘(CKD)在低温粘土砖(CB)生产中的利用。主要目的是研究CKD的比例和烧成温度如何相互作用,影响砖的力学和热特性。使用人工神经网络(ANN)技术和响应面法(RSM)在包括固化温度和CKD %的双变量过程中评估这些物质对调节参数的影响。为了达到这个目的,采用了析因设计,在600°C到900°C的温度范围内,CKD的发生率分别为0%、10%、20%和25%。统计研究结果表明,这些参数对砖的性能有重要影响。根据期望函数RSM、遗传算法ANN和采用TOPSIS方法优化的多准则决策(Multi-Criteria Decision-Making, MCDM),确定了最佳环境分别为896.51°C和29.61%、870.24°C和29.79%、800°C和30%的温度和CKD含量。这些发现允许确定最佳参数来设计砖块,以最佳地平衡强度和隔热,从而通过这种实验方法优化生产条件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Results in Engineering
Results in Engineering Engineering-Engineering (all)
CiteScore
5.80
自引率
34.00%
发文量
441
审稿时长
47 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信