Concrete breakout in steel fiber-reinforced concrete: Database, evaluation, and design recommendations

IF 7.9 Q1 ENGINEERING, MULTIDISCIPLINARY
Ahmad Tarawneh , Roaa Alawadi , Musab Rabi , Abd Al-Aziz Abo-Najem , Yazan Alkhateeb , Hadeel Amirah
{"title":"Concrete breakout in steel fiber-reinforced concrete: Database, evaluation, and design recommendations","authors":"Ahmad Tarawneh ,&nbsp;Roaa Alawadi ,&nbsp;Musab Rabi ,&nbsp;Abd Al-Aziz Abo-Najem ,&nbsp;Yazan Alkhateeb ,&nbsp;Hadeel Amirah","doi":"10.1016/j.rineng.2025.105791","DOIUrl":null,"url":null,"abstract":"<div><div>This study investigates the anchorage breakout capacity of steel fiber-reinforced concrete (SFRC) under tensile and shear loading, addressing gaps in existing knowledge through a comprehensive analysis of 765 experimental tests. The compiled database encompasses cast-in-place and post-installed anchors, varied fiber contents (0–2 %), deformed and straight fibers, edge effects, anchor groups, and a range of embedment depths (<em>h<sub>ef</sub></em>) and concrete strengths. The analysis showed an increase in the concrete breakout capacity due to the presence of steel fibers. A modification factor (<em>ψ<sub>fiber</sub></em>) is proposed to integrate fiber contributions into the Concrete Capacity Design (CCD) method, enabling capacity increase up to 1.5 times higher than plain concrete breakout. The factor is applicable to tensile/shear breakouts and edge-affected anchors but requires restraint for post-installed anchors with <em>h<sub>ef</sub>/diameter</em> &gt; 4.5 due to mixed failure modes. Anchors with <em>h<sub>ef</sub></em> or edge distance (<em>c<sub>1</sub></em>) &lt;0.78 the fiber length show negligible fiber contribution due to anisotropic fiber distribution (wall-effect), revising previous recommendations. Notably, straight fibers enhance capacity comparably to hooked-end fibers, and anchor groups exhibit higher fiber contributions than single anchors, attributed to load redistribution. This work advances SFRC anchor design by validating fiber efficiency across diverse conditions, offering a robust predictive framework, and clarifying limitations for practical implementation.</div></div>","PeriodicalId":36919,"journal":{"name":"Results in Engineering","volume":"27 ","pages":"Article 105791"},"PeriodicalIF":7.9000,"publicationDate":"2025-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Results in Engineering","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590123025018626","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

This study investigates the anchorage breakout capacity of steel fiber-reinforced concrete (SFRC) under tensile and shear loading, addressing gaps in existing knowledge through a comprehensive analysis of 765 experimental tests. The compiled database encompasses cast-in-place and post-installed anchors, varied fiber contents (0–2 %), deformed and straight fibers, edge effects, anchor groups, and a range of embedment depths (hef) and concrete strengths. The analysis showed an increase in the concrete breakout capacity due to the presence of steel fibers. A modification factor (ψfiber) is proposed to integrate fiber contributions into the Concrete Capacity Design (CCD) method, enabling capacity increase up to 1.5 times higher than plain concrete breakout. The factor is applicable to tensile/shear breakouts and edge-affected anchors but requires restraint for post-installed anchors with hef/diameter > 4.5 due to mixed failure modes. Anchors with hef or edge distance (c1) <0.78 the fiber length show negligible fiber contribution due to anisotropic fiber distribution (wall-effect), revising previous recommendations. Notably, straight fibers enhance capacity comparably to hooked-end fibers, and anchor groups exhibit higher fiber contributions than single anchors, attributed to load redistribution. This work advances SFRC anchor design by validating fiber efficiency across diverse conditions, offering a robust predictive framework, and clarifying limitations for practical implementation.
钢纤维增强混凝土中的混凝土破裂:数据库、评估和设计建议
本研究通过对765项试验的综合分析,探讨了钢纤维增强混凝土(SFRC)在拉伸和剪切荷载下的锚固突破能力,解决了现有知识的空白。编译的数据库包括现浇和后安装锚,不同纤维含量(0 - 2%),变形和直纤维,边缘效应,锚组,以及一系列嵌入深度(hef)和混凝土强度。分析表明,由于钢纤维的存在,混凝土的破裂能力增加。提出了一种修正因子(ψfiber),将纤维贡献集成到混凝土承载力设计(CCD)方法中,使承载力增加比普通混凝土高1.5倍。该系数适用于拉伸/剪切突破和受边缘影响的锚杆,但对于hef/直径>的后安装锚杆则需要约束;4.5由于混合失效模式。纤维长度为hef或边缘距离(c1) <;0.78时,由于纤维的各向异性分布(壁效应),纤维的贡献可以忽略不计,修正了之前的建议。值得注意的是,与钩端纤维相比,直端纤维提高了容量,由于负载再分配,锚组比单锚组表现出更高的纤维贡献。这项工作通过验证不同条件下的光纤效率,提供了强大的预测框架,并澄清了实际实施的局限性,从而推进了SFRC锚定设计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Results in Engineering
Results in Engineering Engineering-Engineering (all)
CiteScore
5.80
自引率
34.00%
发文量
441
审稿时长
47 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信