Arc-disjoint in- and out-branchings in semicomplete split digraphs

IF 1 3区 数学 Q3 MATHEMATICS, APPLIED
Jiangdong Ai , Yiming Hao , Zhaoxiang Li , Qi Shao
{"title":"Arc-disjoint in- and out-branchings in semicomplete split digraphs","authors":"Jiangdong Ai ,&nbsp;Yiming Hao ,&nbsp;Zhaoxiang Li ,&nbsp;Qi Shao","doi":"10.1016/j.dam.2025.05.037","DOIUrl":null,"url":null,"abstract":"<div><div>An <em>out-tree (in-tree)</em> is an oriented tree where every vertex except one, called the <em>root</em>, has in-degree (out-degree) one. An <em>out-branching</em> <span><math><msubsup><mrow><mi>B</mi></mrow><mrow><mi>u</mi></mrow><mrow><mo>+</mo></mrow></msubsup></math></span> <em>(in-branching</em> <span><math><msubsup><mrow><mi>B</mi></mrow><mrow><mi>u</mi></mrow><mrow><mo>−</mo></mrow></msubsup></math></span><em>)</em> of a digraph <span><math><mi>D</mi></math></span> is a spanning out-tree (in-tree) rooted at <span><math><mi>u</mi></math></span>. A <em>good</em> <span><math><mrow><mo>(</mo><mi>u</mi><mo>,</mo><mi>v</mi><mo>)</mo></mrow></math></span><em>-pair</em> in <span><math><mi>D</mi></math></span> is a pair of branchings <span><math><mrow><msubsup><mrow><mi>B</mi></mrow><mrow><mi>u</mi></mrow><mrow><mo>+</mo></mrow></msubsup><mo>,</mo><msubsup><mrow><mi>B</mi></mrow><mrow><mi>v</mi></mrow><mrow><mo>−</mo></mrow></msubsup></mrow></math></span> which are arc-disjoint. Thomassen proved that deciding whether a digraph has any good pair is NP-complete. A <em>semicomplete split digraph</em> is a digraph where the vertex set is the disjoint union of two non-empty sets, <span><math><msub><mrow><mi>V</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span> and <span><math><msub><mrow><mi>V</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span>, such that <span><math><msub><mrow><mi>V</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span> is an independent set, the subdigraph induced by <span><math><msub><mrow><mi>V</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span> is semicomplete, and every vertex in <span><math><msub><mrow><mi>V</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span> is adjacent to every vertex in <span><math><msub><mrow><mi>V</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span>. In this paper, we prove that every 2-arc-strong semicomplete split digraph <span><math><mi>D</mi></math></span> contains a good <span><math><mrow><mo>(</mo><mi>u</mi><mo>,</mo><mi>v</mi><mo>)</mo></mrow></math></span>-pair for any choice of vertices <span><math><mrow><mi>u</mi><mo>,</mo><mi>v</mi></mrow></math></span> of <span><math><mi>D</mi></math></span>, thereby confirming a conjecture by Bang-Jensen and Wang [Bang-Jensen and Wang, J. Graph Theory, 2024].</div></div>","PeriodicalId":50573,"journal":{"name":"Discrete Applied Mathematics","volume":"375 ","pages":"Pages 259-268"},"PeriodicalIF":1.0000,"publicationDate":"2025-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete Applied Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0166218X25002926","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

An out-tree (in-tree) is an oriented tree where every vertex except one, called the root, has in-degree (out-degree) one. An out-branching Bu+ (in-branching Bu) of a digraph D is a spanning out-tree (in-tree) rooted at u. A good (u,v)-pair in D is a pair of branchings Bu+,Bv which are arc-disjoint. Thomassen proved that deciding whether a digraph has any good pair is NP-complete. A semicomplete split digraph is a digraph where the vertex set is the disjoint union of two non-empty sets, V1 and V2, such that V1 is an independent set, the subdigraph induced by V2 is semicomplete, and every vertex in V1 is adjacent to every vertex in V2. In this paper, we prove that every 2-arc-strong semicomplete split digraph D contains a good (u,v)-pair for any choice of vertices u,v of D, thereby confirming a conjecture by Bang-Jensen and Wang [Bang-Jensen and Wang, J. Graph Theory, 2024].
半完全分裂有向图中弧不相交的内分支和外分支
out-tree (in-tree)是一种有向树,其中除了一个称为根的顶点外,每个顶点的in-degree (out-degree)都为1。有向图D的出分支Bu+(入分支Bu−)是根于u的生成出树(入树)。D中的一个好的(u,v)-对是一对弧不相交的分支Bu+,Bv−。Thomassen证明了判定一个有向图是否有好的对是np完全的。半完全分裂有向图是这样一种有向图,其中顶点集是两个非空集合V1和V2的不相交并,使得V1是一个独立的集合,由V2引出的子有向图是半完全的,并且V1中的每个顶点与V2中的每个顶点相邻。在本文中,我们证明了每个2-弧强半完全分裂有向图D对于任意选择D的顶点u,v都包含一个好的(u,v)-对,从而证实了Bang-Jensen和Wang [Bang-Jensen and Wang, J. Graph Theory, 2024]的一个猜想。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Discrete Applied Mathematics
Discrete Applied Mathematics 数学-应用数学
CiteScore
2.30
自引率
9.10%
发文量
422
审稿时长
4.5 months
期刊介绍: The aim of Discrete Applied Mathematics is to bring together research papers in different areas of algorithmic and applicable discrete mathematics as well as applications of combinatorial mathematics to informatics and various areas of science and technology. Contributions presented to the journal can be research papers, short notes, surveys, and possibly research problems. The "Communications" section will be devoted to the fastest possible publication of recent research results that are checked and recommended for publication by a member of the Editorial Board. The journal will also publish a limited number of book announcements as well as proceedings of conferences. These proceedings will be fully refereed and adhere to the normal standards of the journal. Potential authors are advised to view the journal and the open calls-for-papers of special issues before submitting their manuscripts. Only high-quality, original work that is within the scope of the journal or the targeted special issue will be considered.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信