Jiangdong Ai , Yiming Hao , Zhaoxiang Li , Qi Shao
{"title":"Arc-disjoint in- and out-branchings in semicomplete split digraphs","authors":"Jiangdong Ai , Yiming Hao , Zhaoxiang Li , Qi Shao","doi":"10.1016/j.dam.2025.05.037","DOIUrl":null,"url":null,"abstract":"<div><div>An <em>out-tree (in-tree)</em> is an oriented tree where every vertex except one, called the <em>root</em>, has in-degree (out-degree) one. An <em>out-branching</em> <span><math><msubsup><mrow><mi>B</mi></mrow><mrow><mi>u</mi></mrow><mrow><mo>+</mo></mrow></msubsup></math></span> <em>(in-branching</em> <span><math><msubsup><mrow><mi>B</mi></mrow><mrow><mi>u</mi></mrow><mrow><mo>−</mo></mrow></msubsup></math></span><em>)</em> of a digraph <span><math><mi>D</mi></math></span> is a spanning out-tree (in-tree) rooted at <span><math><mi>u</mi></math></span>. A <em>good</em> <span><math><mrow><mo>(</mo><mi>u</mi><mo>,</mo><mi>v</mi><mo>)</mo></mrow></math></span><em>-pair</em> in <span><math><mi>D</mi></math></span> is a pair of branchings <span><math><mrow><msubsup><mrow><mi>B</mi></mrow><mrow><mi>u</mi></mrow><mrow><mo>+</mo></mrow></msubsup><mo>,</mo><msubsup><mrow><mi>B</mi></mrow><mrow><mi>v</mi></mrow><mrow><mo>−</mo></mrow></msubsup></mrow></math></span> which are arc-disjoint. Thomassen proved that deciding whether a digraph has any good pair is NP-complete. A <em>semicomplete split digraph</em> is a digraph where the vertex set is the disjoint union of two non-empty sets, <span><math><msub><mrow><mi>V</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span> and <span><math><msub><mrow><mi>V</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span>, such that <span><math><msub><mrow><mi>V</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span> is an independent set, the subdigraph induced by <span><math><msub><mrow><mi>V</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span> is semicomplete, and every vertex in <span><math><msub><mrow><mi>V</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span> is adjacent to every vertex in <span><math><msub><mrow><mi>V</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span>. In this paper, we prove that every 2-arc-strong semicomplete split digraph <span><math><mi>D</mi></math></span> contains a good <span><math><mrow><mo>(</mo><mi>u</mi><mo>,</mo><mi>v</mi><mo>)</mo></mrow></math></span>-pair for any choice of vertices <span><math><mrow><mi>u</mi><mo>,</mo><mi>v</mi></mrow></math></span> of <span><math><mi>D</mi></math></span>, thereby confirming a conjecture by Bang-Jensen and Wang [Bang-Jensen and Wang, J. Graph Theory, 2024].</div></div>","PeriodicalId":50573,"journal":{"name":"Discrete Applied Mathematics","volume":"375 ","pages":"Pages 259-268"},"PeriodicalIF":1.0000,"publicationDate":"2025-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete Applied Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0166218X25002926","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
An out-tree (in-tree) is an oriented tree where every vertex except one, called the root, has in-degree (out-degree) one. An out-branching(in-branching) of a digraph is a spanning out-tree (in-tree) rooted at . A good-pair in is a pair of branchings which are arc-disjoint. Thomassen proved that deciding whether a digraph has any good pair is NP-complete. A semicomplete split digraph is a digraph where the vertex set is the disjoint union of two non-empty sets, and , such that is an independent set, the subdigraph induced by is semicomplete, and every vertex in is adjacent to every vertex in . In this paper, we prove that every 2-arc-strong semicomplete split digraph contains a good -pair for any choice of vertices of , thereby confirming a conjecture by Bang-Jensen and Wang [Bang-Jensen and Wang, J. Graph Theory, 2024].
out-tree (in-tree)是一种有向树,其中除了一个称为根的顶点外,每个顶点的in-degree (out-degree)都为1。有向图D的出分支Bu+(入分支Bu−)是根于u的生成出树(入树)。D中的一个好的(u,v)-对是一对弧不相交的分支Bu+,Bv−。Thomassen证明了判定一个有向图是否有好的对是np完全的。半完全分裂有向图是这样一种有向图,其中顶点集是两个非空集合V1和V2的不相交并,使得V1是一个独立的集合,由V2引出的子有向图是半完全的,并且V1中的每个顶点与V2中的每个顶点相邻。在本文中,我们证明了每个2-弧强半完全分裂有向图D对于任意选择D的顶点u,v都包含一个好的(u,v)-对,从而证实了Bang-Jensen和Wang [Bang-Jensen and Wang, J. Graph Theory, 2024]的一个猜想。
期刊介绍:
The aim of Discrete Applied Mathematics is to bring together research papers in different areas of algorithmic and applicable discrete mathematics as well as applications of combinatorial mathematics to informatics and various areas of science and technology. Contributions presented to the journal can be research papers, short notes, surveys, and possibly research problems. The "Communications" section will be devoted to the fastest possible publication of recent research results that are checked and recommended for publication by a member of the Editorial Board. The journal will also publish a limited number of book announcements as well as proceedings of conferences. These proceedings will be fully refereed and adhere to the normal standards of the journal.
Potential authors are advised to view the journal and the open calls-for-papers of special issues before submitting their manuscripts. Only high-quality, original work that is within the scope of the journal or the targeted special issue will be considered.