Zhi Gao , Matteo Gazzani , Diego A. Tejada-Arango , Abel Soares Siqueira , Ni Wang , Madeleine Gibescu , Germán Morales-España
{"title":"Fully flexible temporal resolution for energy system optimization","authors":"Zhi Gao , Matteo Gazzani , Diego A. Tejada-Arango , Abel Soares Siqueira , Ni Wang , Madeleine Gibescu , Germán Morales-España","doi":"10.1016/j.apenergy.2025.126267","DOIUrl":null,"url":null,"abstract":"<div><div>In order to achieve a timely transition towards sustainable energy systems within a large landscape of multi-sectors and multi-technologies, decision-makers and industry practitioners can rely on time- and space-discretized energy system optimization models. However, such models are often burdened by the computational costs arising from the growing problem complexity, which is especially due to the time discretization. The common strategy to lower the computational cost is to uniformly reduce the temporal resolution, sacrificing the quality of the solution. In light of this, we propose the concept and a formulation of fully flexible temporal resolution, wherein each decision variable and constraint can have a separate temporal resolution. After introducing the formulation in detail, we demonstrate its capability by applying it to an EU-wide case study optimizing both capacity investment and operation decisions of the inter-connected energy system across the different countries. We show that the proposed flexible formulation allows us to flexibly remove variables and constraints that are not needed without losing accuracy, and to simplify the time discretization (e.g., in space) while pushing the Pareto front by simultaneously speeding up computation and limiting losses in accuracy. In conclusion, we highlight the promise of adopting fully flexible temporal resolution and encourage future research to explore further temporal resolution configurations beyond our examples.</div></div>","PeriodicalId":246,"journal":{"name":"Applied Energy","volume":"396 ","pages":"Article 126267"},"PeriodicalIF":10.1000,"publicationDate":"2025-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Energy","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0306261925009973","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0
Abstract
In order to achieve a timely transition towards sustainable energy systems within a large landscape of multi-sectors and multi-technologies, decision-makers and industry practitioners can rely on time- and space-discretized energy system optimization models. However, such models are often burdened by the computational costs arising from the growing problem complexity, which is especially due to the time discretization. The common strategy to lower the computational cost is to uniformly reduce the temporal resolution, sacrificing the quality of the solution. In light of this, we propose the concept and a formulation of fully flexible temporal resolution, wherein each decision variable and constraint can have a separate temporal resolution. After introducing the formulation in detail, we demonstrate its capability by applying it to an EU-wide case study optimizing both capacity investment and operation decisions of the inter-connected energy system across the different countries. We show that the proposed flexible formulation allows us to flexibly remove variables and constraints that are not needed without losing accuracy, and to simplify the time discretization (e.g., in space) while pushing the Pareto front by simultaneously speeding up computation and limiting losses in accuracy. In conclusion, we highlight the promise of adopting fully flexible temporal resolution and encourage future research to explore further temporal resolution configurations beyond our examples.
期刊介绍:
Applied Energy serves as a platform for sharing innovations, research, development, and demonstrations in energy conversion, conservation, and sustainable energy systems. The journal covers topics such as optimal energy resource use, environmental pollutant mitigation, and energy process analysis. It welcomes original papers, review articles, technical notes, and letters to the editor. Authors are encouraged to submit manuscripts that bridge the gap between research, development, and implementation. The journal addresses a wide spectrum of topics, including fossil and renewable energy technologies, energy economics, and environmental impacts. Applied Energy also explores modeling and forecasting, conservation strategies, and the social and economic implications of energy policies, including climate change mitigation. It is complemented by the open-access journal Advances in Applied Energy.