{"title":"Performance enhancement of limestone calcined clay cement (LC3) using shale: industrial implementation Perspectives","authors":"Khuram Rashid , Mounir Ltifi , Idrees Zafar , Minkwan Ju","doi":"10.1016/j.jestch.2025.102106","DOIUrl":null,"url":null,"abstract":"<div><div>Limestone calcined clay cement (LC<sup>3</sup>) is one of prospective low-carbon ternary binders, developed by replacing 50 % of clinker with a combination of calcined clay (40 % kaolinite content) and limestone. However, for the optimization with low-grade clay, and their calcination temperatures remains a significant challenge for large-scale industrial production. This study investigates the potential enhancement of LC<sup>3</sup> by incorporating shale/clay alternatives across three phases of casting. In the first phase, the mix proportions of the ternary components were varied to determine LC<sup>3</sup> formulations ranging from LC<sup>3</sup>-10 to LC<sup>3</sup>-50, replacing ordinary Portland cement (OPC) with 10 % to 50 %, respectively. In the second phase, the optimized composition was further refined by increasing the calcination temperature of the shale/clay with 750, 800, and 850 °C. It was resulted that replacing OPC with up to 20 % LC<sup>3</sup>, combined with shale calcined at 800 °C, outperformed conventional cement in strength. The third phase focused on industrial plant implementation, where the shale-based LC<sup>3</sup>-15 and LC<sup>3</sup>-25 formulations were developed. The findings indicated that the LC<sup>3</sup>-15 and LC<sup>3</sup>-25 met the strength requirements of ASTM standards at all tested ages, with the LC<sup>3</sup>-15 also satisfying EN standards. An in-depth energy utilization analysis revealed significant environmental and economic benefits, with the LC<sup>3</sup>-25 production at an industrial scale, reducing CO<sub>2</sub> emissions by 16.2 % and production costs by 11 %. It was demonstrated that the shale-based LC<sup>3</sup>-25 as a sustainable alternative to conventional cement.</div></div>","PeriodicalId":48609,"journal":{"name":"Engineering Science and Technology-An International Journal-Jestech","volume":"69 ","pages":"Article 102106"},"PeriodicalIF":5.4000,"publicationDate":"2025-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Engineering Science and Technology-An International Journal-Jestech","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2215098625001612","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Limestone calcined clay cement (LC3) is one of prospective low-carbon ternary binders, developed by replacing 50 % of clinker with a combination of calcined clay (40 % kaolinite content) and limestone. However, for the optimization with low-grade clay, and their calcination temperatures remains a significant challenge for large-scale industrial production. This study investigates the potential enhancement of LC3 by incorporating shale/clay alternatives across three phases of casting. In the first phase, the mix proportions of the ternary components were varied to determine LC3 formulations ranging from LC3-10 to LC3-50, replacing ordinary Portland cement (OPC) with 10 % to 50 %, respectively. In the second phase, the optimized composition was further refined by increasing the calcination temperature of the shale/clay with 750, 800, and 850 °C. It was resulted that replacing OPC with up to 20 % LC3, combined with shale calcined at 800 °C, outperformed conventional cement in strength. The third phase focused on industrial plant implementation, where the shale-based LC3-15 and LC3-25 formulations were developed. The findings indicated that the LC3-15 and LC3-25 met the strength requirements of ASTM standards at all tested ages, with the LC3-15 also satisfying EN standards. An in-depth energy utilization analysis revealed significant environmental and economic benefits, with the LC3-25 production at an industrial scale, reducing CO2 emissions by 16.2 % and production costs by 11 %. It was demonstrated that the shale-based LC3-25 as a sustainable alternative to conventional cement.
期刊介绍:
Engineering Science and Technology, an International Journal (JESTECH) (formerly Technology), a peer-reviewed quarterly engineering journal, publishes both theoretical and experimental high quality papers of permanent interest, not previously published in journals, in the field of engineering and applied science which aims to promote the theory and practice of technology and engineering. In addition to peer-reviewed original research papers, the Editorial Board welcomes original research reports, state-of-the-art reviews and communications in the broadly defined field of engineering science and technology.
The scope of JESTECH includes a wide spectrum of subjects including:
-Electrical/Electronics and Computer Engineering (Biomedical Engineering and Instrumentation; Coding, Cryptography, and Information Protection; Communications, Networks, Mobile Computing and Distributed Systems; Compilers and Operating Systems; Computer Architecture, Parallel Processing, and Dependability; Computer Vision and Robotics; Control Theory; Electromagnetic Waves, Microwave Techniques and Antennas; Embedded Systems; Integrated Circuits, VLSI Design, Testing, and CAD; Microelectromechanical Systems; Microelectronics, and Electronic Devices and Circuits; Power, Energy and Energy Conversion Systems; Signal, Image, and Speech Processing)
-Mechanical and Civil Engineering (Automotive Technologies; Biomechanics; Construction Materials; Design and Manufacturing; Dynamics and Control; Energy Generation, Utilization, Conversion, and Storage; Fluid Mechanics and Hydraulics; Heat and Mass Transfer; Micro-Nano Sciences; Renewable and Sustainable Energy Technologies; Robotics and Mechatronics; Solid Mechanics and Structure; Thermal Sciences)
-Metallurgical and Materials Engineering (Advanced Materials Science; Biomaterials; Ceramic and Inorgnanic Materials; Electronic-Magnetic Materials; Energy and Environment; Materials Characterizastion; Metallurgy; Polymers and Nanocomposites)