Multigrid methods for the Stokes problem on GPU systems

IF 2.5 3区 工程技术 Q3 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
Cu Cui, Guido Kanschat
{"title":"Multigrid methods for the Stokes problem on GPU systems","authors":"Cu Cui,&nbsp;Guido Kanschat","doi":"10.1016/j.compfluid.2025.106703","DOIUrl":null,"url":null,"abstract":"<div><div>This paper presents a matrix-free multigrid method for solving the Stokes problem, discretized using <span><math><msup><mrow><mi>H</mi></mrow><mrow><mtext>div</mtext></mrow></msup></math></span>-conforming discontinuous Galerkin methods. Our method operates directly on both the velocity and pressure spaces, eliminating the need for a global Schur complement approximation. We employ a multiplicative Schwarz smoother with vertex-patch subdomains and the Schur complement method combined with the fast diagonalization for the efficient evaluation of the local solvers. By leveraging the tensor product structure of Raviart–Thomas elements and an optimized, conflict-free shared memory access pattern, the matrix-free operator evaluation demonstrates excellent performance, reaching over one billion degrees of freedom per second on a single NVIDIA A100 GPU. Numerical results indicate efficiency comparable to that of the three-dimensional Poisson problem.</div></div>","PeriodicalId":287,"journal":{"name":"Computers & Fluids","volume":"299 ","pages":"Article 106703"},"PeriodicalIF":2.5000,"publicationDate":"2025-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers & Fluids","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S004579302500163X","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

This paper presents a matrix-free multigrid method for solving the Stokes problem, discretized using Hdiv-conforming discontinuous Galerkin methods. Our method operates directly on both the velocity and pressure spaces, eliminating the need for a global Schur complement approximation. We employ a multiplicative Schwarz smoother with vertex-patch subdomains and the Schur complement method combined with the fast diagonalization for the efficient evaluation of the local solvers. By leveraging the tensor product structure of Raviart–Thomas elements and an optimized, conflict-free shared memory access pattern, the matrix-free operator evaluation demonstrates excellent performance, reaching over one billion degrees of freedom per second on a single NVIDIA A100 GPU. Numerical results indicate efficiency comparable to that of the three-dimensional Poisson problem.
GPU系统上Stokes问题的多网格方法
本文提出了一种求解Stokes问题的无矩阵多重网格方法,该方法采用hdiv -符合性不连续伽辽金方法进行离散。我们的方法直接作用于速度和压力空间,消除了全局Schur补逼近的需要。我们采用顶点补丁子域的乘法Schwarz光滑和结合快速对角化的Schur补方法来高效地求解局部解。通过利用Raviart-Thomas元素的张量积结构和优化的无冲突共享内存访问模式,无矩阵算子评估表现出出色的性能,在单个NVIDIA A100 GPU上每秒达到超过10亿自由度。数值结果表明,该方法的效率与三维泊松问题相当。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Computers & Fluids
Computers & Fluids 物理-计算机:跨学科应用
CiteScore
5.30
自引率
7.10%
发文量
242
审稿时长
10.8 months
期刊介绍: Computers & Fluids is multidisciplinary. The term ''fluid'' is interpreted in the broadest sense. Hydro- and aerodynamics, high-speed and physical gas dynamics, turbulence and flow stability, multiphase flow, rheology, tribology and fluid-structure interaction are all of interest, provided that computer technique plays a significant role in the associated studies or design methodology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信