Megha Shastry , Ye Fan , Clarissa Martins , Dinesh K. Pai
{"title":"Goal-oriented 3D pattern adjustment with machine learning","authors":"Megha Shastry , Ye Fan , Clarissa Martins , Dinesh K. Pai","doi":"10.1016/j.gmod.2025.101272","DOIUrl":null,"url":null,"abstract":"<div><div>Fit and sizing of clothing are fundamental problems in the field of garment design, manufacture, and retail. Here we propose new computational methods for adjusting the fit of clothing on realistic models of the human body by interactively modifying desired <em>fit attributes</em>. Clothing fit represents the relationship between the body and the garment, and can be quantified using physical fit attributes such as ease and pressure on the body. However, the relationship between pattern geometry and such fit attributes is notoriously complex and nonlinear, requiring deep pattern making expertise to adjust patterns to achieve fit goals. Such attributes can be computed by physically based simulations, using soft avatars. Here we propose a method to learn the relationship between the fit attributes and the space of 2D pattern edits. We demonstrate our method via interactive tools that directly edit fit attributes in 3D and instantaneously predict the corresponding pattern adjustments. The approach has been tested with a range of garment types, and validated by comparing with physical prototypes. Our method introduces an alternative way to directly express fit adjustment goals, making pattern adjustment more broadly accessible. As an additional benefit, the proposed approach allows pattern adjustments to be systematized, enabling better communication and audit of decisions.</div></div>","PeriodicalId":55083,"journal":{"name":"Graphical Models","volume":"140 ","pages":"Article 101272"},"PeriodicalIF":2.5000,"publicationDate":"2025-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Graphical Models","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1524070325000190","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
引用次数: 0
Abstract
Fit and sizing of clothing are fundamental problems in the field of garment design, manufacture, and retail. Here we propose new computational methods for adjusting the fit of clothing on realistic models of the human body by interactively modifying desired fit attributes. Clothing fit represents the relationship between the body and the garment, and can be quantified using physical fit attributes such as ease and pressure on the body. However, the relationship between pattern geometry and such fit attributes is notoriously complex and nonlinear, requiring deep pattern making expertise to adjust patterns to achieve fit goals. Such attributes can be computed by physically based simulations, using soft avatars. Here we propose a method to learn the relationship between the fit attributes and the space of 2D pattern edits. We demonstrate our method via interactive tools that directly edit fit attributes in 3D and instantaneously predict the corresponding pattern adjustments. The approach has been tested with a range of garment types, and validated by comparing with physical prototypes. Our method introduces an alternative way to directly express fit adjustment goals, making pattern adjustment more broadly accessible. As an additional benefit, the proposed approach allows pattern adjustments to be systematized, enabling better communication and audit of decisions.
期刊介绍:
Graphical Models is recognized internationally as a highly rated, top tier journal and is focused on the creation, geometric processing, animation, and visualization of graphical models and on their applications in engineering, science, culture, and entertainment. GMOD provides its readers with thoroughly reviewed and carefully selected papers that disseminate exciting innovations, that teach rigorous theoretical foundations, that propose robust and efficient solutions, or that describe ambitious systems or applications in a variety of topics.
We invite papers in five categories: research (contributions of novel theoretical or practical approaches or solutions), survey (opinionated views of the state-of-the-art and challenges in a specific topic), system (the architecture and implementation details of an innovative architecture for a complete system that supports model/animation design, acquisition, analysis, visualization?), application (description of a novel application of know techniques and evaluation of its impact), or lecture (an elegant and inspiring perspective on previously published results that clarifies them and teaches them in a new way).
GMOD offers its authors an accelerated review, feedback from experts in the field, immediate online publication of accepted papers, no restriction on color and length (when justified by the content) in the online version, and a broad promotion of published papers. A prestigious group of editors selected from among the premier international researchers in their fields oversees the review process.