Generalized Gumbel-Softmax gradient estimator for generic discrete random variables

IF 3.9 3区 计算机科学 Q2 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Weonyoung Joo , Dongjun Kim , Seungjae Shin , Il-Chul Moon
{"title":"Generalized Gumbel-Softmax gradient estimator for generic discrete random variables","authors":"Weonyoung Joo ,&nbsp;Dongjun Kim ,&nbsp;Seungjae Shin ,&nbsp;Il-Chul Moon","doi":"10.1016/j.patrec.2025.05.024","DOIUrl":null,"url":null,"abstract":"<div><div>Estimating the gradients of stochastic nodes in stochastic computational graphs is one of the crucial research questions in the deep generative modeling community, which enables gradient descent optimization on neural network parameters. Stochastic gradient estimators of discrete random variables, such as the Gumbel-Softmax reparameterization trick for Bernoulli and categorical distributions, are widely explored. Meanwhile, other discrete distribution cases, such as the Poisson, geometric, binomial, multinomial, negative binomial, etc., have not been explored. This paper proposes a generalized version of the Gumbel-Softmax stochastic gradient estimator. The proposed method is able to reparameterize generic discrete distributions, not restricted to the Bernoulli and the categorical, and it enables learning on large-scale stochastic computational graphs with discrete random nodes. Our experiments consist of (1) synthetic examples and applications on variational autoencoders, which show the efficacy of our methods; and (2) topic models, which demonstrate the value of the proposed estimation in practice.</div></div>","PeriodicalId":54638,"journal":{"name":"Pattern Recognition Letters","volume":"196 ","pages":"Pages 148-155"},"PeriodicalIF":3.9000,"publicationDate":"2025-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pattern Recognition Letters","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S016786552500220X","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Estimating the gradients of stochastic nodes in stochastic computational graphs is one of the crucial research questions in the deep generative modeling community, which enables gradient descent optimization on neural network parameters. Stochastic gradient estimators of discrete random variables, such as the Gumbel-Softmax reparameterization trick for Bernoulli and categorical distributions, are widely explored. Meanwhile, other discrete distribution cases, such as the Poisson, geometric, binomial, multinomial, negative binomial, etc., have not been explored. This paper proposes a generalized version of the Gumbel-Softmax stochastic gradient estimator. The proposed method is able to reparameterize generic discrete distributions, not restricted to the Bernoulli and the categorical, and it enables learning on large-scale stochastic computational graphs with discrete random nodes. Our experiments consist of (1) synthetic examples and applications on variational autoencoders, which show the efficacy of our methods; and (2) topic models, which demonstrate the value of the proposed estimation in practice.
一般离散随机变量的广义Gumbel-Softmax梯度估计
随机计算图中随机节点的梯度估计是深度生成建模领域的关键研究问题之一,它实现了神经网络参数的梯度下降优化。离散随机变量的随机梯度估计,如Bernoulli分布和分类分布的Gumbel-Softmax再参数化技巧,得到了广泛的研究。同时,其他离散分布情况,如泊松分布、几何分布、二项分布、多项分布、负二项分布等,尚未得到探讨。本文提出了一种广义的Gumbel-Softmax随机梯度估计。该方法能够重新参数化一般离散分布,不局限于伯努利分布和分类分布,并且能够在具有离散随机节点的大规模随机计算图上进行学习。我们的实验包括:(1)综合示例和在变分自编码器上的应用,证明了我们的方法的有效性;(2)主题模型,在实践中验证了所提估计的价值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Pattern Recognition Letters
Pattern Recognition Letters 工程技术-计算机:人工智能
CiteScore
12.40
自引率
5.90%
发文量
287
审稿时长
9.1 months
期刊介绍: Pattern Recognition Letters aims at rapid publication of concise articles of a broad interest in pattern recognition. Subject areas include all the current fields of interest represented by the Technical Committees of the International Association of Pattern Recognition, and other developing themes involving learning and recognition.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信