A. Gayol , F. Malano , I. Scarinci , P. Pérez , M. Valente
{"title":"Novel PENELOPE geometry subroutine for patient-Specific dosimetry in the presence of electromagnetic fields","authors":"A. Gayol , F. Malano , I. Scarinci , P. Pérez , M. Valente","doi":"10.1016/j.radphyschem.2025.113027","DOIUrl":null,"url":null,"abstract":"<div><div>Technological advancements have enabled the integration of magnetic resonance imaging with linear accelerators, introducing new dosimetry challenges arising from strong magnetic fields within the ionizing radiation field. Notwithstanding the traditional pengeom subroutine, distributed with the PENELOPE package, adequately tracks particles in the presence of external electromagnetic fields, it is limited to geometries defined by quadric surfaces. Conversely, established developments such as PenEasy, which handle voxelized geometries within the PENELOPE main code, are constrained in performing particle tracking with external electromagnetic fields. In response, the here introduced voxgeom emerges as an innovative geometry subroutine tailored to track particles within voxelized regions seamlessly integrated with the PENELOPE main code, even when accounting for external electromagnetic fields. <em>Voxgeom</em> considers each voxel of the geometry as a body in a 3D arrangement, whereas interfaces are treated completely analogue to the pengeom subroutine. Furthermore, allows the use of patient-specific information to establish a univocal relationship between each body and material files, and integrates the models provided by the PENELOPE package for simulating electron/positron transport with external EM fields. Successful performance is obtained comparing voxgeom with the well-validated pengeom geometry manager both in absence and in presence of external strong magnetic fields. Differences up to 2 % and 1 % are reported between both subroutines, for the homogeneous and inhomogeneous phantom with magnetic field, respectively. Moreover, parameters such as percentage depth dose at depth of maximum dose, 10, and 20 cm are indistinguishable. Finally, promising dosimetry outputs are obtained using voxgeom to characterize dosimetry effects due to the presence of magnetic fields as happens in the Elekta Unity MR-LINAC in a representative patient-specific clinical case.</div></div>","PeriodicalId":20861,"journal":{"name":"Radiation Physics and Chemistry","volume":"237 ","pages":"Article 113027"},"PeriodicalIF":2.8000,"publicationDate":"2025-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Radiation Physics and Chemistry","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0969806X25005195","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Technological advancements have enabled the integration of magnetic resonance imaging with linear accelerators, introducing new dosimetry challenges arising from strong magnetic fields within the ionizing radiation field. Notwithstanding the traditional pengeom subroutine, distributed with the PENELOPE package, adequately tracks particles in the presence of external electromagnetic fields, it is limited to geometries defined by quadric surfaces. Conversely, established developments such as PenEasy, which handle voxelized geometries within the PENELOPE main code, are constrained in performing particle tracking with external electromagnetic fields. In response, the here introduced voxgeom emerges as an innovative geometry subroutine tailored to track particles within voxelized regions seamlessly integrated with the PENELOPE main code, even when accounting for external electromagnetic fields. Voxgeom considers each voxel of the geometry as a body in a 3D arrangement, whereas interfaces are treated completely analogue to the pengeom subroutine. Furthermore, allows the use of patient-specific information to establish a univocal relationship between each body and material files, and integrates the models provided by the PENELOPE package for simulating electron/positron transport with external EM fields. Successful performance is obtained comparing voxgeom with the well-validated pengeom geometry manager both in absence and in presence of external strong magnetic fields. Differences up to 2 % and 1 % are reported between both subroutines, for the homogeneous and inhomogeneous phantom with magnetic field, respectively. Moreover, parameters such as percentage depth dose at depth of maximum dose, 10, and 20 cm are indistinguishable. Finally, promising dosimetry outputs are obtained using voxgeom to characterize dosimetry effects due to the presence of magnetic fields as happens in the Elekta Unity MR-LINAC in a representative patient-specific clinical case.
期刊介绍:
Radiation Physics and Chemistry is a multidisciplinary journal that provides a medium for publication of substantial and original papers, reviews, and short communications which focus on research and developments involving ionizing radiation in radiation physics, radiation chemistry and radiation processing.
The journal aims to publish papers with significance to an international audience, containing substantial novelty and scientific impact. The Editors reserve the rights to reject, with or without external review, papers that do not meet these criteria. This could include papers that are very similar to previous publications, only with changed target substrates, employed materials, analyzed sites and experimental methods, report results without presenting new insights and/or hypothesis testing, or do not focus on the radiation effects.