A general relativistic hydrodynamic simulation code for studying advective, sub-Keplerian accretion flow onto black holes

IF 1.9 4区 物理与天体物理 Q2 ASTRONOMY & ASTROPHYSICS
S.K. Garain
{"title":"A general relativistic hydrodynamic simulation code for studying advective, sub-Keplerian accretion flow onto black holes","authors":"S.K. Garain","doi":"10.1016/j.ascom.2025.100974","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper, we describe a general relativistic hydrodynamics simulation code which is developed to simulate advective accretion flow onto black holes. We are particularly interested in the accretion simulations of sub-Keplerian matter in the close vicinity of black holes. Due to the presence of centrifugal barrier, a nearly free-falling sub-Keplerian accretion flow slows down close to a black hole and can even pass through shocks before accelerating again to the black hole. We design our simulation code using the high resolution shock capturing scheme so that such shock structures can be captured and analyzed for relevance. In this paper, we describe our implementation and validation of the code against a few known analytical and numerical results of sub-Keplerian matter accretion.</div></div>","PeriodicalId":48757,"journal":{"name":"Astronomy and Computing","volume":"53 ","pages":"Article 100974"},"PeriodicalIF":1.9000,"publicationDate":"2025-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Astronomy and Computing","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2213133725000472","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we describe a general relativistic hydrodynamics simulation code which is developed to simulate advective accretion flow onto black holes. We are particularly interested in the accretion simulations of sub-Keplerian matter in the close vicinity of black holes. Due to the presence of centrifugal barrier, a nearly free-falling sub-Keplerian accretion flow slows down close to a black hole and can even pass through shocks before accelerating again to the black hole. We design our simulation code using the high resolution shock capturing scheme so that such shock structures can be captured and analyzed for relevance. In this paper, we describe our implementation and validation of the code against a few known analytical and numerical results of sub-Keplerian matter accretion.
一个广义相对论流体动力学模拟代码,用于研究黑洞上的平流,次开普勒吸积流
本文描述了一个用于模拟黑洞平流吸积流的广义相对论流体力学模拟程序。我们对黑洞附近的次开普勒物质的吸积模拟特别感兴趣。由于离心屏障的存在,几乎自由落体的次开普勒吸积流在接近黑洞时减速,甚至可以在再次加速到黑洞之前通过激波。我们使用高分辨率冲击捕获方案设计模拟代码,以便捕获和分析这些冲击结构的相关性。在本文中,我们描述了我们的实现和验证代码对一些已知的亚开普勒物质吸积的解析和数值结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Astronomy and Computing
Astronomy and Computing ASTRONOMY & ASTROPHYSICSCOMPUTER SCIENCE,-COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
CiteScore
4.10
自引率
8.00%
发文量
67
期刊介绍: Astronomy and Computing is a peer-reviewed journal that focuses on the broad area between astronomy, computer science and information technology. The journal aims to publish the work of scientists and (software) engineers in all aspects of astronomical computing, including the collection, analysis, reduction, visualisation, preservation and dissemination of data, and the development of astronomical software and simulations. The journal covers applications for academic computer science techniques to astronomy, as well as novel applications of information technologies within astronomy.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信