{"title":"Adaptive backstepping finite-time output feedback control for path tracking of autonomous vehicle with asymmetric dead-zone","authors":"Sucai Zhang , Yongfu Wang , Gang Li","doi":"10.1016/j.mechatronics.2025.103362","DOIUrl":null,"url":null,"abstract":"<div><div>A finite time adaptive output feedback control scheme with state constraint is proposed for the path tracking control of autonomous vehicle considering the asymmetric dead-zone. Firstly, the vehicle dynamics model and path tracking model are established by combining the dead-zone model, and the adaptive law is designed to approximate the parameters of dead-zone model. On this basis, an adaptive backstepping controller with output-constrained feedback control is designed by combining the filtering error compensation mechanism and the finite time technique, introducing the barrier Lyapunov function and the backstepping control technique. In order to save communication resources, a dynamic threshold event triggering mechanism is introduced. Finally, a rigorous stability analysis based on Lyapunov stability theory is presented to ensure that all signals of the closed-loop system are bounded in finite time. The effectiveness of the proposed method is verified by different simulations, hardware-in-the-loop experiments and real-time vehicle experiments. The results show that the proposed method is effective under different working conditions. The results of real-time vehicle experiments show that the controller can effectively improve the accuracy of path tracking control and reduce the maximum lateral position error to 0.1752 m compared with other methods, and the scheme can provide a theoretical reference for the control practice of autonomous vehicle.</div></div>","PeriodicalId":49842,"journal":{"name":"Mechatronics","volume":"110 ","pages":"Article 103362"},"PeriodicalIF":3.1000,"publicationDate":"2025-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mechatronics","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0957415825000716","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
A finite time adaptive output feedback control scheme with state constraint is proposed for the path tracking control of autonomous vehicle considering the asymmetric dead-zone. Firstly, the vehicle dynamics model and path tracking model are established by combining the dead-zone model, and the adaptive law is designed to approximate the parameters of dead-zone model. On this basis, an adaptive backstepping controller with output-constrained feedback control is designed by combining the filtering error compensation mechanism and the finite time technique, introducing the barrier Lyapunov function and the backstepping control technique. In order to save communication resources, a dynamic threshold event triggering mechanism is introduced. Finally, a rigorous stability analysis based on Lyapunov stability theory is presented to ensure that all signals of the closed-loop system are bounded in finite time. The effectiveness of the proposed method is verified by different simulations, hardware-in-the-loop experiments and real-time vehicle experiments. The results show that the proposed method is effective under different working conditions. The results of real-time vehicle experiments show that the controller can effectively improve the accuracy of path tracking control and reduce the maximum lateral position error to 0.1752 m compared with other methods, and the scheme can provide a theoretical reference for the control practice of autonomous vehicle.
期刊介绍:
Mechatronics is the synergistic combination of precision mechanical engineering, electronic control and systems thinking in the design of products and manufacturing processes. It relates to the design of systems, devices and products aimed at achieving an optimal balance between basic mechanical structure and its overall control. The purpose of this journal is to provide rapid publication of topical papers featuring practical developments in mechatronics. It will cover a wide range of application areas including consumer product design, instrumentation, manufacturing methods, computer integration and process and device control, and will attract a readership from across the industrial and academic research spectrum. Particular importance will be attached to aspects of innovation in mechatronics design philosophy which illustrate the benefits obtainable by an a priori integration of functionality with embedded microprocessor control. A major item will be the design of machines, devices and systems possessing a degree of computer based intelligence. The journal seeks to publish research progress in this field with an emphasis on the applied rather than the theoretical. It will also serve the dual role of bringing greater recognition to this important area of engineering.