Part distortion monitoring in additive manufacturing using machining

IF 4.7 Q2 ENGINEERING, MANUFACTURING
Jaydeep Karandikar , Akash Tiwari , Josh Harbin , Christopher Tyler , Scott Smith , Derril Vezina , Rob Caron
{"title":"Part distortion monitoring in additive manufacturing using machining","authors":"Jaydeep Karandikar ,&nbsp;Akash Tiwari ,&nbsp;Josh Harbin ,&nbsp;Christopher Tyler ,&nbsp;Scott Smith ,&nbsp;Derril Vezina ,&nbsp;Rob Caron","doi":"10.1016/j.addlet.2025.100295","DOIUrl":null,"url":null,"abstract":"<div><div>In additive manufacturing, accumulation of residual stresses can result in severe part distortion from the desired preform shape. Current methods for in-situ part distortion monitoring in additive manufacturing typically require expensive sensors, or capital equipment, and require time-consuming post-processing to understand the shape deviation. This paper presents an in-situ method, in the context of hybrid manufacturing, for part distortion detection using machining of additively manufactured parts. As a surrogate, three test artifacts were used to represent different distorted geometries. The tool axis positions from the machine tool controller and the cutting power were monitored during a facing operation. Cutting power data was used to detect the tool entry and exit in the workpiece using a novel approach with power standard deviation metric. The workpiece geometry and distorted configuration was subsequently predicted for positional and rotational deviations to within 2 mm accuracy using synchronized tool position data with cutting power. The proposed method can be used in a hybrid (additive and subtractive) machine tool to periodically check part distortion in the additive build. The method is applicable for any additive process and is low-cost and computationally inexpensive.</div></div>","PeriodicalId":72068,"journal":{"name":"Additive manufacturing letters","volume":"14 ","pages":"Article 100295"},"PeriodicalIF":4.7000,"publicationDate":"2025-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Additive manufacturing letters","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772369025000295","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
引用次数: 0

Abstract

In additive manufacturing, accumulation of residual stresses can result in severe part distortion from the desired preform shape. Current methods for in-situ part distortion monitoring in additive manufacturing typically require expensive sensors, or capital equipment, and require time-consuming post-processing to understand the shape deviation. This paper presents an in-situ method, in the context of hybrid manufacturing, for part distortion detection using machining of additively manufactured parts. As a surrogate, three test artifacts were used to represent different distorted geometries. The tool axis positions from the machine tool controller and the cutting power were monitored during a facing operation. Cutting power data was used to detect the tool entry and exit in the workpiece using a novel approach with power standard deviation metric. The workpiece geometry and distorted configuration was subsequently predicted for positional and rotational deviations to within 2 mm accuracy using synchronized tool position data with cutting power. The proposed method can be used in a hybrid (additive and subtractive) machine tool to periodically check part distortion in the additive build. The method is applicable for any additive process and is low-cost and computationally inexpensive.
增材制造中零件变形监测
在增材制造中,残余应力的积累会导致零件严重变形。目前在增材制造中进行原位零件变形监测的方法通常需要昂贵的传感器或资本设备,并且需要耗时的后处理才能了解形状偏差。本文提出了一种在混合制造背景下,利用增材制造的零件加工进行零件畸变检测的原位方法。作为代理,三个测试工件被用来表示不同的扭曲几何。在加工过程中,通过机床控制器监测刀具轴的位置和切削功率。采用一种新的功率标准差度量方法,利用切削功率数据检测刀具在工件中的进出。随后,利用同步刀具位置数据和切削功率,预测了工件几何形状和变形结构的位置和旋转偏差,精度在2mm以内。该方法可应用于加减法混合机床中,对加式制造中的零件畸变进行周期性检测。该方法适用于任何增材工艺,成本低,计算成本低。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Additive manufacturing letters
Additive manufacturing letters Materials Science (General), Industrial and Manufacturing Engineering, Mechanics of Materials
CiteScore
3.70
自引率
0.00%
发文量
0
审稿时长
37 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信