Jiayin Song , Bing Sun , Qiue Cai , Junzhe Li , Hao Li , Sheng Zeng
{"title":"Pore structure evolution and mechanism of plugging during dissolution-erosion of acid leaching minerals from uranium-bearing sandstone","authors":"Jiayin Song , Bing Sun , Qiue Cai , Junzhe Li , Hao Li , Sheng Zeng","doi":"10.1016/j.hydromet.2025.106511","DOIUrl":null,"url":null,"abstract":"<div><div>Mineral dissolution and erosion during the leaching of uranium-bearing sandstone have profound effects on the evolution of pore structure and uranium leaching rate. X-ray diffraction (XRD), scanning electron microscopy (SEM), and nuclear magnetic resonance (NMR) techniques were used to characterise mineral changes and pore structure evolution in samples. The results indicate that during the in situ leaching process, feldspar was transformed into clay minerals and quartz. Dolomite and calcite completely dissolved and formed a large amount of Ca<sup>2+</sup>, which increased the content of CaSO<sub>4</sub>. The CaSO<sub>4</sub> and MgSiO<sub>3</sub> precipitated particles formed in the reaction blocked the pores or migrated with the leaching solution, and the porosity of the sandstone initially decreased and then increased. Furthermore, the pores were divided into micropores, mesopores, and macropores, and combined with NMR fractal theory, it was found that the pore structure of sandstone exhibited multifractal characteristics. The obtained pore fractal dimension had a positive correlation with quartz, dolomite, calcite, and feldspar contents, whereas the other mineral components showed a negative correlation. This study provides a theoretical reference for understanding the mechanism of pore plugging and optimising the deplugging process in acid leaching for uranium extraction.</div></div>","PeriodicalId":13193,"journal":{"name":"Hydrometallurgy","volume":"236 ","pages":"Article 106511"},"PeriodicalIF":4.8000,"publicationDate":"2025-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Hydrometallurgy","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0304386X25000763","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"METALLURGY & METALLURGICAL ENGINEERING","Score":null,"Total":0}
引用次数: 0
Abstract
Mineral dissolution and erosion during the leaching of uranium-bearing sandstone have profound effects on the evolution of pore structure and uranium leaching rate. X-ray diffraction (XRD), scanning electron microscopy (SEM), and nuclear magnetic resonance (NMR) techniques were used to characterise mineral changes and pore structure evolution in samples. The results indicate that during the in situ leaching process, feldspar was transformed into clay minerals and quartz. Dolomite and calcite completely dissolved and formed a large amount of Ca2+, which increased the content of CaSO4. The CaSO4 and MgSiO3 precipitated particles formed in the reaction blocked the pores or migrated with the leaching solution, and the porosity of the sandstone initially decreased and then increased. Furthermore, the pores were divided into micropores, mesopores, and macropores, and combined with NMR fractal theory, it was found that the pore structure of sandstone exhibited multifractal characteristics. The obtained pore fractal dimension had a positive correlation with quartz, dolomite, calcite, and feldspar contents, whereas the other mineral components showed a negative correlation. This study provides a theoretical reference for understanding the mechanism of pore plugging and optimising the deplugging process in acid leaching for uranium extraction.
期刊介绍:
Hydrometallurgy aims to compile studies on novel processes, process design, chemistry, modelling, control, economics and interfaces between unit operations, and to provide a forum for discussions on case histories and operational difficulties.
Topics covered include: leaching of metal values by chemical reagents or bacterial action at ambient or elevated pressures and temperatures; separation of solids from leach liquors; removal of impurities and recovery of metal values by precipitation, ion exchange, solvent extraction, gaseous reduction, cementation, electro-winning and electro-refining; pre-treatment of ores by roasting or chemical treatments such as halogenation or reduction; recycling of reagents and treatment of effluents.