Rimsha Perveen , Shumaila Bibi , Mohammad Danish , Sadia Atta , Sobhy M. Ibrahim , Sadam Hussain , Muhammad Ahmad Wattoo , Shu-Juan Bao , Aziz Ur Rehman
{"title":"Tailoring of hierarchical MoZrO3/MoS2 for unrivaled efficient Electrocatalytic oxygen evolution process","authors":"Rimsha Perveen , Shumaila Bibi , Mohammad Danish , Sadia Atta , Sobhy M. Ibrahim , Sadam Hussain , Muhammad Ahmad Wattoo , Shu-Juan Bao , Aziz Ur Rehman","doi":"10.1016/j.flatc.2025.100900","DOIUrl":null,"url":null,"abstract":"<div><div>The fabrication of earth-abundant and highly efficient electrocatalysts to replace benchmark materials such as RuO<sub>2</sub> and IrO<sub>2</sub> has attained significant attention from experts for advancing clean energy processes, particularly through the oxygen evolution reaction (OER) in alkaline solutions. Presented work describes a new two-dimensional MoS<sub>2</sub> nanoflower doped with molybdenum and zirconium (MoZrO<sub>3</sub>/MoS<sub>2</sub>) synthesized via a facile and efficient in situ hydrothermal strategy. This robust and cost-effective electrocatalyst demonstrates superior activity, stability, and scalability for electrocatalytic applications. The MoZrO<sub>3</sub>/MoS<sub>2</sub> nanostructure exhibits a highly synergistic interaction, probably due to the incorporation of the metallic MoZrO<sub>3</sub> phase, which significantly enhances electronic conductivity, reduces charge transfer resistance, and maximizes active site availability. Comprehensive characterization, including FTIR, XRD, and SEM analyses, confirmed the crystalline and structural integrity of the synthesized material. Notably, the MoZrO<sub>3</sub>/MoS<sub>2</sub> composite achieved an impressively low overpotential of 0.252 V at 10 mA cm<sup>−2</sup>, outperforming both pristine MoS<sub>2</sub> (0.303 V) and CuZrO<sub>3</sub>/MoS<sub>2</sub> (0.283 V) in identical conditions. The nanocomposite also exhibits exceptional kinetics with a Tafel slope of 43.5 mV dec<sup>−1</sup> and robust long-term stability, maintaining performance over 24 h of continuous operation. DFT analysis further validates the synergistic interaction by revealing reduced bandgap, enhanced density of states, and favorable charge distribution at the interface, supporting the experimentally observed high OER activity. These remarkable properties highlight the ability of MoZrO<sub>3</sub>/MoS<sub>2</sub> as a stable, efficient, scalable and heterostructured electrocatalyst for OER. This study not only highlights a promising pathway for the design earth-abundant materials electrocatalysts as alternative to noble-metal-based catalysts for future innovations in cost-effective and sustainable energy conversion technologies.</div></div>","PeriodicalId":316,"journal":{"name":"FlatChem","volume":"52 ","pages":"Article 100900"},"PeriodicalIF":5.9000,"publicationDate":"2025-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"FlatChem","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2452262725000947","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The fabrication of earth-abundant and highly efficient electrocatalysts to replace benchmark materials such as RuO2 and IrO2 has attained significant attention from experts for advancing clean energy processes, particularly through the oxygen evolution reaction (OER) in alkaline solutions. Presented work describes a new two-dimensional MoS2 nanoflower doped with molybdenum and zirconium (MoZrO3/MoS2) synthesized via a facile and efficient in situ hydrothermal strategy. This robust and cost-effective electrocatalyst demonstrates superior activity, stability, and scalability for electrocatalytic applications. The MoZrO3/MoS2 nanostructure exhibits a highly synergistic interaction, probably due to the incorporation of the metallic MoZrO3 phase, which significantly enhances electronic conductivity, reduces charge transfer resistance, and maximizes active site availability. Comprehensive characterization, including FTIR, XRD, and SEM analyses, confirmed the crystalline and structural integrity of the synthesized material. Notably, the MoZrO3/MoS2 composite achieved an impressively low overpotential of 0.252 V at 10 mA cm−2, outperforming both pristine MoS2 (0.303 V) and CuZrO3/MoS2 (0.283 V) in identical conditions. The nanocomposite also exhibits exceptional kinetics with a Tafel slope of 43.5 mV dec−1 and robust long-term stability, maintaining performance over 24 h of continuous operation. DFT analysis further validates the synergistic interaction by revealing reduced bandgap, enhanced density of states, and favorable charge distribution at the interface, supporting the experimentally observed high OER activity. These remarkable properties highlight the ability of MoZrO3/MoS2 as a stable, efficient, scalable and heterostructured electrocatalyst for OER. This study not only highlights a promising pathway for the design earth-abundant materials electrocatalysts as alternative to noble-metal-based catalysts for future innovations in cost-effective and sustainable energy conversion technologies.
期刊介绍:
FlatChem - Chemistry of Flat Materials, a new voice in the community, publishes original and significant, cutting-edge research related to the chemistry of graphene and related 2D & layered materials. The overall aim of the journal is to combine the chemistry and applications of these materials, where the submission of communications, full papers, and concepts should contain chemistry in a materials context, which can be both experimental and/or theoretical. In addition to original research articles, FlatChem also offers reviews, minireviews, highlights and perspectives on the future of this research area with the scientific leaders in fields related to Flat Materials. Topics of interest include, but are not limited to, the following: -Design, synthesis, applications and investigation of graphene, graphene related materials and other 2D & layered materials (for example Silicene, Germanene, Phosphorene, MXenes, Boron nitride, Transition metal dichalcogenides) -Characterization of these materials using all forms of spectroscopy and microscopy techniques -Chemical modification or functionalization and dispersion of these materials, as well as interactions with other materials -Exploring the surface chemistry of these materials for applications in: Sensors or detectors in electrochemical/Lab on a Chip devices, Composite materials, Membranes, Environment technology, Catalysis for energy storage and conversion (for example fuel cells, supercapacitors, batteries, hydrogen storage), Biomedical technology (drug delivery, biosensing, bioimaging)