Crystallization regulation and ion migration suppression enabled by bifunctional lithium difluoro (oxalato) borate additive for stable perovskite solar cells

IF 2.7 4区 工程技术 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY
Rana Shahid Mahmood , Weicun Chu , Riming Nie
{"title":"Crystallization regulation and ion migration suppression enabled by bifunctional lithium difluoro (oxalato) borate additive for stable perovskite solar cells","authors":"Rana Shahid Mahmood ,&nbsp;Weicun Chu ,&nbsp;Riming Nie","doi":"10.1016/j.orgel.2025.107285","DOIUrl":null,"url":null,"abstract":"<div><div>Although perovskite solar cells (PSCs) are growing rapidly to achieve higher photovoltaic performance, their practical applications have still been obstructed by stability issues in humid atmosphere. Here, we adopted an additive engineering (one additive in two layers) strategy by doping organic-inorganic dual nature additive lithium difluoro(oxalato)borate (Li-DFOB) into lead iodide (PbI<sub>2</sub>) and Spiro-OMeTAD, resulting in enhanced photovoltaic performance and long-term stability of PSCs. The incorporation of Li-DFOB can enhance perovskite crystal quality and moisture resistance of the hole transporting layer by suppressing ion migration, charge carrier recombination, and reducing hysteresis. A replacement of Li-TFSI with a stable Li-DFOB salt in Spiro-OMeTAD can increase the hydrophobicity of the hole transporting layer (HTL) by preventing degradation in humid air and improve the charge carrier transportation. The prepared devices can maintain 98.7 % of their initial power conversion efficiency (PCE), 24.07 % after 624 h in ambient conditions. This additive engineering strategy recommends such dual-nature additives to enhance the performance and stability of PSCs, leading to water-resistant devices.</div></div>","PeriodicalId":399,"journal":{"name":"Organic Electronics","volume":"144 ","pages":"Article 107285"},"PeriodicalIF":2.7000,"publicationDate":"2025-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Organic Electronics","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1566119925000916","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Although perovskite solar cells (PSCs) are growing rapidly to achieve higher photovoltaic performance, their practical applications have still been obstructed by stability issues in humid atmosphere. Here, we adopted an additive engineering (one additive in two layers) strategy by doping organic-inorganic dual nature additive lithium difluoro(oxalato)borate (Li-DFOB) into lead iodide (PbI2) and Spiro-OMeTAD, resulting in enhanced photovoltaic performance and long-term stability of PSCs. The incorporation of Li-DFOB can enhance perovskite crystal quality and moisture resistance of the hole transporting layer by suppressing ion migration, charge carrier recombination, and reducing hysteresis. A replacement of Li-TFSI with a stable Li-DFOB salt in Spiro-OMeTAD can increase the hydrophobicity of the hole transporting layer (HTL) by preventing degradation in humid air and improve the charge carrier transportation. The prepared devices can maintain 98.7 % of their initial power conversion efficiency (PCE), 24.07 % after 624 h in ambient conditions. This additive engineering strategy recommends such dual-nature additives to enhance the performance and stability of PSCs, leading to water-resistant devices.

Abstract Image

双功能双氟硼酸锂添加剂对稳定钙钛矿太阳能电池的结晶调节和离子迁移抑制作用
尽管钙钛矿太阳能电池(PSCs)正在迅速发展,以实现更高的光伏性能,但其在潮湿大气中的稳定性问题仍然阻碍了其实际应用。本研究采用增材工程(两层一种添加剂)策略,在碘化铅(PbI2)和Spiro-OMeTAD中掺杂有机-无机双性质添加剂二氟硼酸锂(Li-DFOB),提高了PSCs的光伏性能和长期稳定性。Li-DFOB的掺入可以抑制离子迁移、载流子复合和减小磁滞,从而提高钙钛矿晶体质量和孔输运层的抗湿性。在Spiro-OMeTAD中,用稳定的Li-DFOB盐代替Li-TFSI,可以通过防止潮湿空气中的降解来提高空穴输运层(HTL)的疏水性,改善载流子的输运。所制备的器件在环境条件下624 h后可保持其初始功率转换效率(PCE)的98.7%和24.07%。这种添加剂工程策略建议使用这种双重性添加剂来增强psc的性能和稳定性,从而产生防水设备。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Organic Electronics
Organic Electronics 工程技术-材料科学:综合
CiteScore
6.60
自引率
6.20%
发文量
238
审稿时长
44 days
期刊介绍: Organic Electronics is a journal whose primary interdisciplinary focus is on materials and phenomena related to organic devices such as light emitting diodes, thin film transistors, photovoltaic cells, sensors, memories, etc. Papers suitable for publication in this journal cover such topics as photoconductive and electronic properties of organic materials, thin film structures and characterization in the context of organic devices, charge and exciton transport, organic electronic and optoelectronic devices.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信