FER-VMamba: A robust facial expression recognition framework with global compact attention and hierarchical feature interaction

IF 14.7 1区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Hui Ma , Sen Lei , Heng-Chao Li , Turgay Celik
{"title":"FER-VMamba: A robust facial expression recognition framework with global compact attention and hierarchical feature interaction","authors":"Hui Ma ,&nbsp;Sen Lei ,&nbsp;Heng-Chao Li ,&nbsp;Turgay Celik","doi":"10.1016/j.inffus.2025.103371","DOIUrl":null,"url":null,"abstract":"<div><div>Facial Expression Recognition (FER) has broad applications in driver safety, human–computer interaction, and cognitive psychology research, where it helps analyze emotional states and enhance social interactions. However, FER in static images faces challenges due to occlusions and pose variations, which hinder the model’s effectiveness in real-world scenarios. To address these issues, we propose FER-VMamba, a robust and efficient architecture designed to improve FER performance in complex scenarios. FER-VMamba comprises two core modules: the Global Compact Attention Module (GCAM) and the Hierarchical Feature Interaction Module (HFIM). GCAM extracts compact global semantic features through Multi-Scale Hybrid Convolutions (MixConv), refining them with a Spatial Channel Attention Mechanism (SCAM) to improve robustness against occlusions and pose variations. HFIM captures local and global dependencies by segmenting feature maps into non-overlapping partitions, which the FER-VSS module processes with Conv-SCAM-Conv for local features and Visual State-Space (VSS) for global dependencies. Additionally, self-attention and relation-attention mechanisms in HFIM refine features by modeling inter-partition relationships, further improving the accuracy of expression recognition. Extensive experiments on the RAF and AffectNet datasets demonstrate that FER-VMamba achieves state-of-the-art performance. Furthermore, we introduce FSL-FER-VMamba, an extension of FER-VSS optimized for cross-domain few-shot FER, providing strong adaptability to domain shifts. <span><span>https://github.com/SwjtuMa/FER-VMamba.git</span><svg><path></path></svg></span>.</div></div>","PeriodicalId":50367,"journal":{"name":"Information Fusion","volume":"124 ","pages":"Article 103371"},"PeriodicalIF":14.7000,"publicationDate":"2025-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Information Fusion","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1566253525004440","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Facial Expression Recognition (FER) has broad applications in driver safety, human–computer interaction, and cognitive psychology research, where it helps analyze emotional states and enhance social interactions. However, FER in static images faces challenges due to occlusions and pose variations, which hinder the model’s effectiveness in real-world scenarios. To address these issues, we propose FER-VMamba, a robust and efficient architecture designed to improve FER performance in complex scenarios. FER-VMamba comprises two core modules: the Global Compact Attention Module (GCAM) and the Hierarchical Feature Interaction Module (HFIM). GCAM extracts compact global semantic features through Multi-Scale Hybrid Convolutions (MixConv), refining them with a Spatial Channel Attention Mechanism (SCAM) to improve robustness against occlusions and pose variations. HFIM captures local and global dependencies by segmenting feature maps into non-overlapping partitions, which the FER-VSS module processes with Conv-SCAM-Conv for local features and Visual State-Space (VSS) for global dependencies. Additionally, self-attention and relation-attention mechanisms in HFIM refine features by modeling inter-partition relationships, further improving the accuracy of expression recognition. Extensive experiments on the RAF and AffectNet datasets demonstrate that FER-VMamba achieves state-of-the-art performance. Furthermore, we introduce FSL-FER-VMamba, an extension of FER-VSS optimized for cross-domain few-shot FER, providing strong adaptability to domain shifts. https://github.com/SwjtuMa/FER-VMamba.git.
ferf - vamba:一个具有全局紧凑关注和层次特征交互的鲁棒面部表情识别框架
面部表情识别(FER)在驾驶安全、人机交互和认知心理学研究中有着广泛的应用,它有助于分析情绪状态和增强社会互动。然而,由于遮挡和姿态变化,静态图像中的FER面临挑战,这阻碍了模型在真实场景中的有效性。为了解决这些问题,我们提出了ferm - vamba,这是一种健壮高效的架构,旨在提高复杂场景下的ferm性能。ferm - vamba包括两个核心模块:全球契约关注模块(GCAM)和分层特征交互模块(HFIM)。GCAM通过多尺度混合卷积(MixConv)提取紧凑的全局语义特征,并使用空间通道注意机制(SCAM)对其进行细化,以提高对遮挡和姿态变化的鲁棒性。HFIM通过将特征映射分割成不重叠的分区来捕获局部和全局依赖关系,fe -VSS模块用convv - scam - conv处理局部特征,用视觉状态空间(VSS)处理全局依赖关系。此外,HFIM中的自注意和关系注意机制通过建模分区间关系来细化特征,进一步提高了表情识别的准确性。在RAF和AffectNet数据集上进行的大量实验表明,fer - vamba达到了最先进的性能。此外,我们还引入了fsl -FER- vamba,这是ferl - vss的扩展,针对跨域少射FER进行了优化,具有很强的域漂移适应性。https://github.com/SwjtuMa/FER-VMamba.git。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Information Fusion
Information Fusion 工程技术-计算机:理论方法
CiteScore
33.20
自引率
4.30%
发文量
161
审稿时长
7.9 months
期刊介绍: Information Fusion serves as a central platform for showcasing advancements in multi-sensor, multi-source, multi-process information fusion, fostering collaboration among diverse disciplines driving its progress. It is the leading outlet for sharing research and development in this field, focusing on architectures, algorithms, and applications. Papers dealing with fundamental theoretical analyses as well as those demonstrating their application to real-world problems will be welcome.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信